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Abstract

Electronic communities are relying increasingly on the results of continuous polls

to rate the effectiveness of their members and offerings. Sites such as eBay and

Amazon solicit feedback about merchants and products, with prior feedback and

results-to-date available to participants before they register their approval ratings.

In such a setting, participants are understandably prone to exaggerate their approval

or disapproval, so as to move the average rating in a favored direction.

We explore several protocols that solicit approval ratings and report a consensus

outcome without rewarding insincerity. One such system is rationally optimal while

still reporting an outcome based on the the usual notion of averaging. That system

allows all participants to manipulate the outcome in turn. Although multiple equi-

libria exist for that system, they all report the same average approval rating as their

outcome. We generalize our results to obtain a range of declared-strategy voting

systems suitable for approval-rating polls.

1 Approval ratings and their aggregation

Approval ratings are one mechanism that communities can use to offer incentive and reward
for good behavior or service. The prospect of feedback following a given interaction presum-
ably increases the accountability of that interaction for all parties involved. Publication of
approval ratings then enables appropriate consequences to follow from positive or negative
experiences. In this paper we consider several forms of aggregation and we show that some
methods can reward insincerity while others cannot. We next provide several examples of
approval rating systems and formulate a general form of an approval rating poll.

1.1 Examples of approval rating polls

Subscribers and observers of media frequently learn of the results of approval rating polls that
attempt to discern how strongly a participating electorate endorses a person or a position
of interest. As an example, several web sites post varous forms of approval ratings for films
and games. Specifically, Rotten Tomatoes [2] posts the results of two polls for each film:

• In effect, each review is turned into a 0 or 1 value, and the Tomatometer is the
average of those values expressed as a percentage. Putative viewers might consult a
film’s Tomatometer value to determine whether they should see that film.

• Each critic can also rate a film’s overall quality on a 1–10 scale. Rotten Tomatoes
then publishes the average of all such ratings.

Finally, consider the electronic marketplace, in which participants are asked to rate the
honesty and effectiveness of merchants and customers. Sites such as eBay poll their partic-
ipants concerning how strongly they approve of the behavior of the marketplace members
they encounter in transactions. Upon completion of a transaction, the involved parties are
asked to rate each other. An aggregation of an indvidual’s approval ratings is posted for
public view, so that members can consider such information before engaging that individual
in a transaction.



1.2 Formulation

We next define a general instance of an approval rating poll to facilitate presentation of our
results.

• An electorate of n participants is polled. Based on the participants’ response and the
aggregation protocol at hand, the result of the poll will be published as a rational
number in the interval [0, 1].

• Each participant i has in mind a sincere preference rating ri, where 0 ≤ ri ≤ 1, that can
be construed as that participant’s dictatorial preference. The tuple of all participants’
sincere ratings is denoted by the vector ~r. We further make the reasonable assumption
that voter i’s preferences are single-peaked and non-plateauing.1

• Finally, voter i participates in the poll by expressing a rating preference of vi, which
may or may not be the same as ri. In fact, we are particularly interested in situations
where vi 6= ri. For example, consider an eBay customer who undertakes a transaction
with a highly approved merchant. If the customer becomes disgruntled with the mer-
chant, then the customer’s resulting rating of the merchant might be overly negative,
precisely because of the merchant’s otherwise high rating.

The tuple of all expressed approval ratings is denoted by the vector ~v.

This paper considers an approach that can account for, mitigate, or prevent the use of
insincerity to increase a participant’s effectiveness in an approval rating poll.

1.3 Aggregating approval ratings

The results of an approval rating poll are typically reported by an aggregation procedure
that is disclosed a priori. In this section, we consider two popular aggregation schemes:
average and median.

Average aggregation Here, the result of the approval rating poll is computed as the

average of the participants’ expressed approval ratings: v̄ =
�

n
j=1

vj

n . While the Average
aggregation function is sensitive to each voter’s input, it has an important disadvantage:
Voters can often gain by voting insincerely. For example, the 1983 film Videodrome has
five critics’ ratings on Metacritic [1]. If we assume that these critics rated the film sincerely
(that each would prefer that the average rating of the film be his or her rating), we have
~r = [0.4, 0.7, 0.8, 0.8, 0.88]. If these preferences are actually expressed sincerely in an Average
aggregation context, then we have ~v = ~r and the Average outcome is 0.716.

Consider voter 5, whose ideal outcome is r5 = 0.88. That voter could achive a better
outcome by not expressing the sincere preference v5 = 0.88 and instead voting v5 = 1.
The resulting Average aggregation yields the outcome 0.74, which, being closer to 0.88, is
preferred by voter 5 to 0.716.

Median aggregation (n odd) Another possible aggregation function computes a median

of ~v: ṽ is a value that satisfies |{i : ṽ < vi}| ≤
n
2
≤ |{i : ṽ ≤ vi}|.

2 According to the median

1For the applications we describe, it is reasonable to assume that each voter i would prefer that the
outcome be as near to the ideal ri as possible. This single-peaked assumption makes possible the optimal
strategy we describe in section 2.

2The above definition does not necessarily prescribe a unique outcome when n is even; we address this
issue below.



voter theorem [4, 10], when n is odd, Median aggregation becomes the unique, Condorcet-
compliant [13] rating system, yielding a result that is preferred by some majority of voters
to every other outcome.

Unfortunately, Median aggregation can effectively ignore almost half of the voters—
majority rule can mean majority tyranny. Given the tuple of votes ~v = [0, 0, 0, 1, 1], the 1-
voters are effectively ignored when the median, 0, is chosen as the outcome. Majority tyranny
could be quite undesirable for polls of this type, especially when the goal of aggregating
ratings is to represent a satisfactory consensus for all voters. The Average outcome of the
above tuple, 0.4, arguably provides such a much better consensus.

In contrast with Average aggregation, Median aggregation is nonmanipulable by insin-
cere voters—at least when n is odd: a voter i can never improve the outcome from his or her
point of view by voting vi 6= ri. (The treatment for an even number of voters and the proofs
here and below are omitted for space; this material can be found in LeGrand [12, ch. 3].)
Thus, Median aggregation does not reward insincerity for an odd number of participants.

Without losing nonmanipulability, the Median function can be generalized to give the
outcome bṽ where |{i : bṽ < vi}| ≤ bn ≤ |{i : bṽ ≤ vi}| for any 0 ≤ b ≤ 1 (in this notation,
the b is intended as a parameter modifying the tilde symbol). If bn is an integer, there may
be more than one 0 ≤ φ ≤ 1 that satisfies |{i : φ < vi}| ≤ bn ≤ |{i : φ ≤ vi}|. In that case,
define Φ as the set of all such φ. Then

bṽ ≡







min(Φ) if b < min(Φ)
b if min(Φ) ≤ b ≤ max(Φ)

max(Φ) if max(Φ) < b

This order-statistic outcome equals max(~v) when b = 0, the third quartile when b = 1

4
, the

Median outcome when b = 1

2
, the first quartile when b = 3

4
and min(~v) when b = 1.

2 Rationally optimal strategy for Average aggregation

As shown in section 1, Average aggregation can reward insincerity. In this section, we
develop a rationally optimal strategy: a computation by which a voter can achieve a result
as close as possible to that voter’s preferred outcome. As before, we assume an electorate in
which n voters will express preferences. We begin by considering a rationally optimal (“best
response”) strategy from the perspective of a final, omniscient voter. We then consider the
behavior of a system in which all voters use a rationally optimal strategy.

To facilitate exposition and analysis of our results, we begin by generalizing the scale on
which preferences are expressed as follows. In an [m, M ]-Average poll, voters are allowed to
express preference ratings in the interval [m, M ], where m ≤ 0 and 1 ≤M . We continue to
assume that sincere preference ratings are in the interval [0, 1]; the expanded range is there-
fore intended to allow voters more room to manipulate the outcome. We also assume that
preferences are aggregated by computing the average of the voters’ expressed preferences.

2.1 Strategy for a final, omniscient voter

Consider a (−∞, +∞)-Average poll in which voter vn is the last voter to express an approval
rating, and in which all other voters vote their sincere preference ratings: (∀i 6= n) vi = ri.
If voter n can see the expressed approval ratings of all voters, then the ideal outcome for
voter n (v̄ = rn) can be realized by voting vn = rnn−

∑

j 6=n rj .
More generally, in an [m, M ]-Average poll, voter n should express vn to move the outcome



as close to rn as possible:

vn = min



max



rnn−
∑

j 6=n

rj , m



 , M



 (1)

The above is the rationally optimal strategy for voter n in an [m, M ]-Average approval rating
poll.

As an example, consider the [0, 1]-Average system with sincere preferences from the
Videodrome example above: ~r = [0.4, 0.7, 0.8, 0.8, 0.88]. After all other voters express their
sincere preferences, v5’s rationally optimal preference rating is given by

v5 = min



max



r5n−
∑

j 6=5

rj , 0



 , 1





= min (max (0.88 · 5− (0.4 + 0.7 + 0.8 + 0.8), 0) , 1) = 1 (2)

achieving an outcome v̄ of 0.74. No other choice for v5 would achieve an outcome v̄ closer
to r5 = 0.88.

After voter n has voted using Equation 1, either voter n’s ideal outcome rn has been
realized or voter n has moved the outcome as close to rn as is immediately possible. Note
also that v̄ ∈ [0, 1] even though vn ∈ [m, M ].

2.2 Equilibrium for n strategic voters

We have thus far allowed only voter n to use a rationally optimal strategy, requiring all
other voters to express their sincere approval ratings. We now consider the properties of
the more practical [m, M ]-Average system in which each voter i uses a rationally optimal
strategy to compute an expressed approval rating, based on i’s sincere approval rating ri

and on the expressed votes of all other voters. When each voter i establishes vi, other voters
may wish to update their expressed approval ratings.

While there are many possible schemes that could accommodate iterative changes in
expressed preferences, we examine the more general issue of reaching an equilibrium: each
voter i has arrived at an expressed preference vi such that the rationally optimal strategy
recommends no change in vi:

(∀i) vi = min



max



rin−
∑

j 6=i

vj , m



 , M



 (3)

So, at equilibrium, (∀i) (v̄ < ri ∧ vi = M) ∨ (v̄ = ri) ∨ (v̄ > ri ∧ vi = m), and it follows
that

(∀i) v̄ < ri −→ vi = M (4)

and
(∀i) v̄ > ri −→ vi = m (5)

Equation 4 says that for every i such that v̄ < ri, vi = M . So we can place a lower
bound on the sum of all vis by assuming all other vis are at the minimum:

m · |{i : v̄ ≥ ri}|+ M · |{i : v̄ < ri}| ≤

n
∑

i=1

vi = v̄n



Similarly, Equation 5 says that for every i such that v̄ > ri, vi = m. So we can place an
upper bound on the sum of all vis by assuming all other vis are at the maximum:

v̄n =

n
∑

i=1

vi ≤ m · |{i : v̄ > ri}|+ M · |{i : v̄ ≤ ri}|

So we have

m · |{i : v̄ ≥ ri}|+ M · |{i : v̄ < ri}| ≤ v̄n ≤ m · |{i : v̄ > ri}|+ M · |{i : v̄ ≤ ri}|

which implies [12, ch. 3]

|{i : v̄ < ri}| ≤
v̄ −m

M −m
n ≤ |{i : v̄ ≤ ri}|

Thus any average at equilibrium must satisfy the two equations

|{i : v̄ < ri}| ≤
v̄ −m

M −m
n (6)

and
v̄ −m

M −m
n ≤ |{i : v̄ ≤ ri}| (7)

3 Multiple equilibria can exist

For some sincere-ratings vectors ~r, multiple equilibria exist: there exist more than one
~v satisfying Equation 3. For example, if minimum vote m = 0, maximum vote M = 1
and ~r = [0.4, 0.7, 0.7, 0.8, 0.88] (a slight tweak to the Videodrome example), then any ~v =
[0, v2, v3, 1, 1], where v2 + v3 = 1.5, satisfies Equation 3 and thus represents an equilibrium
from which the optimal strategy would change no voter’s vote.

In this case, at each possible equilibrium the outcome is v̄ = 0.7 (the ideal outcome of
the two voters “conspiring” to keep it there). This is no coincidence; in general, it turns out
that, even when multiple equilibria exist, the average at equilibrium is unique.

4 At most one equilibrium average rating can exist

We have seen that, given a length-n vector ~r of sincere ratings where 0 ≤ ri ≤ 1 for
1 ≤ i ≤ n, any equilibrium ~v that results from every voter’s using the optimal strategy will
have a φ = v̄ that satisfies the inequalities

|{i : φ < ri}| ≤
φ−m

M −m
n (8)

and
φ−m

M −m
n ≤ |{i : φ ≤ ri}| (9)

It turns out that at most one such φ exists for a given ~r:

Theorem 4.1. Given a vector ~r of length n where 0 ≤ ri ≤ 1 for 1 ≤ i ≤ n,

|{i : φ1 < ri}| ≤
φ1−m
M−m n ≤ |{i : φ1 ≤ ri}| ∧

|{i : φ2 < ri}| ≤
φ2−m
M−m n ≤ |{i : φ2 ≤ ri}| −→ φ1 = φ2

(The proof considers two symmetric cases, φ1 < φ2 and φ2 < φ1, and shows by contra-
diction that each is impossible.)



5 At least one equilibrium always exists

It does little good to show that all equilibria will have equal averages if an equilibrium does
not always exist. Fortunately, for any set of sincere preferred outcomes ~r, there will always
be at least one equilibrium ~v such that no voter i would choose to change vi according to
the optimal Average strategy defined above.

We can show that a particular procedure will always find an equilibrium. We use the
Videodrome example (~r = [0.4, 0.7, 0.8, 0.8, 0.88] with m = 0, M = 1) again for demon-
stration. This time, let us say initial votes are assumed to be, not sincere, but zero (the
minimum allowed vote): ~v = [0, 0, 0, 0, 0]. Then we again allow voters to revise their votes
in order, from voter 5 down to voter 1. (This particular order will prove significant.) First,
voter 5 deliberates:

v5 = min



max



r5n−
∑

j 6=5

rj , 0



 , 1



 = min (max (0.8 · 5− (0 + 0 + 0 + 0), 0) , 1) = 1

and changes v5 to 1. The voters then in turn reason similarly and change v4 to 1, v3 to
1, v2 to 0.5 and v1 to 0. The resulting vote vector, ~v = [0, 0.5, 1, 1, 1], is indeed the same
equilibrium found above in section 2.2, this time going through the voters only once.

This procedure inspires the following straightforward algorithm, which takes a ~r as input
and outputs an equilibrium ~v, assigning to each vi exactly once. It orders the voters by
decreasing ri values, then uses the optimal strategy for each voter i in order, implicitly
making the assumption that vj = m for j > i.

Algorithm 5.1. FindEquilibrium(~r, m, M):
sort ~r so that (∀i ≤ j) ri ≥ rj

for i = 1 to n do
vi ← min

(

max
(

rin−
∑

k<i vk − (n− i)m, m
)

, M
)

return ~v

Note that the algorithm assigns a value between m and M , inclusive, to each vi exactly
once, and that the assignment to vi does not depend on the values of vj where j > i.
Therefore, after Algorithm 5.1 completes, it must be true that

(∀i) vi = min

(

max

(

rin−
∑

k<i

vk − (n− i)m, m

)

, M

)

but this is not quite enough to see that the resulting ~v is an equilibrium. To see that, we
must show that an intermediate voter would not change his or her vote even after later
voters have voted:

Theorem 5.2. For any ~r, where 0 ≤ ri ≤ 1 for 1 ≤ i ≤ n, the vote vector ~v returned by

Algorithm 5.1 satisfies

(∀i) vi = min



max



rin−
∑

k 6=i

vk, m



 , M





(The proof essentially shows that, because of the way that Algorithm 5.1 orders the
voters, a certain kind of “partial” equilibrium is satisfied after each step of the algorithm,
which implies that an equilibrium is found after the last step.)

So an equilibrium ~v must always exist for any input ~r and any m ≤ 0 and M ≥ 1.
We now know that, given some sincere-preference vector ~r,



• at most one value φ satisfies Equations 8 and 9 (Theorem 4.1),

• any equilibrium ~v has average vote v̄ satisfying Equations 6 and 7 (section 2.2), and

• at least one equilibrium ~v must exist (Theorem 5.2)

and so we can conclude that any φ that satisfies Equations 8 and 9 must equal the average
vote v̄ at all possible equilibria ~v.

6 Average-Approval-Rating DSV

We have seen that Algorithm 5.1, FindEquilibrium, always finds an equilibrium for any
sincere-preference vector ~r. We also know that any equilibrium ~v will have the same average
v̄ (and that 0 ≤ v̄ ≤ 1). It follows that the average at equilibrium is unique and can be
defined as a function:

Algorithm 6.1. AverageAtEquilibrium(~r, m, M):
~v ← FindEquilibrium(~r, m, M)

return v̄ =
� n

i=1
vi

n

Even when m < 0 and/or M > 1, AverageAtEquilibrium will return an outcome between
0 and 1. In fact, the outcome returned will be within the range defined by the input vector
of cardinal preferences:

Theorem 6.2. (∀m ≤ 0, M ≥ 1) min(~r) ≤ AverageAtEquilibrium(~r, m, M) ≤ max(~r).

6.1 Declared-Strategy Voting

In 1996, Lorrie Cranor and Ron K. Cytron [9] described a hypothetical voting system they
called Declared-Strategy Voting (DSV). DSV can be seen as a meta-voting system, in that
it uses voters’ expressed preferences among alternatives to vote rationally in their stead
in repeated simulated elections. The repeated simulated elections are run according to the
rules of some underlying voting protocol, which can be any protocol that accepts any kind of
ballots and uses them to choose one outcome. Cranor [8] explored using DSV with plurality,
but DSV, as a meta-voting system, could conceivably work with any voting protocol for
which a rationally optimal strategy can be described, such as Average aggregation.

6.2 A new class of rating systems

The Average and Median protocols necessarily take a vote vector ~v as input—voters’ sincere
preference information cannot be directly and reliably elicited, so ~r is not generally available.
If the Average system is used and voters are rationally strategic (and are allowed to keep
changing their votes until all decide to stop), the outcome can reasonably be expected to
equal AverageAtEquilibrium(~r, 0, 1). But instead of using Average on the vote vector ~v and
relying on the voters to use optimally rational strategy when deciding on their votes vi,
AverageAtEquilibrium(~v, 0, 1) can be calculated and taken as the outcome, implicitly and
effectively using the DSV framework with Average as the underlying voting protocol. In
fact, we are not limited to AverageAtEquilibrium(~v, 0, 1); AverageAtEquilibrium(~v, m, M)
lies between 0 and 1 for any m ≤ 0 and M ≥ 1 and so can serve as a rating system as well.

For illustration, we reuse the Videodrome example and assume sincere voters: ~v =
[0.4, 0.7, 0.8, 0.8, 0.88]. Suppose we want to take as the outcome of this election not the



average vote v̄ or the median vote ṽ but AverageAtEquilibrium(~v, 0, 1). First we calculate
FindEquilibrium(~v, 0, 1), which we have seen in section 2.2 to be

~w = FindEquilibrium(~v, 0, 1) = [0, 0.5, 1, 1, 1]

Then we see that

w̄ =

∑

5

i=1
wi

5
=

0 + 0.5 + 1 + 1 + 1

5
= 0.7

giving the outcome as 0.7, which equals neither the Average outcome (v̄ = 0.716) nor the
Median outcome (ṽ = 0.8).

Alternatively, we can let m = −99 and M = 100. Then the equilibrium we find turns
out to be

~w = FindEquilibrium(~v,−99, 100) = [−99,−99, 2, 100, 100]

And then

w̄ =

∑

5

i=1
wi

5
=
−99 + (−99) + 2 + 100 + 100

5
= 0.8

This time the effective power to determine the outcome fell to voter 3 rather than voter 2,
giving the Median outcome of 0.8. (We will see that if m + M = 1 and M −m is allowed
to become large enough, the resultant outcome will equal the Median outcome.)

It turns out that in neither of these cases will any voter be able to gain from voting
insincerely. This is no coincidence.

This Average-Approval-Rating (AAR) DSV system has three intuitively desirable prop-
erties: a kind of monotonicity (Theorem 6.3), immunity to Average-like strategy (Theorem
6.4) and a general nonmanipulability (Theorem 6.5). The first two will imply the third.

6.3 Monotonicity of AAR DSV

First, the monotonicity property: When some input votes are increased and none is de-
creased, the outcome never decreases.

Theorem 6.3. If ~v = [v1, v2, . . . vn] and ~v′ = [v′
1
, v′

2
, . . . v′n] where (∀i) vi ≤ v′i, then

AverageAtEquilibrium(~v, m, M) ≤ AverageAtEquilibrium(~v′, m, M).

(The proof is by contradiction.)

6.4 AAR DSV is immune to Average-style strategy

Another desirable property of AAR DSV is that its outcome is unaffected by voters’ using
Average-style strategy, trying to move the outcome in the desired direction by moving their
votes in that direction.

Theorem 6.4. If ~v = [v1, v2, . . . vn] and ~v′ = [v′
1
, v′

2
, . . . v′n] where, for all 1 ≤ i ≤ n,

• v′i ≤ vi if AverageAtEquilibrium(~v, m, M) > vi

• v′i = vi if AverageAtEquilibrium(~v, m, M) = vi

• v′i ≥ vi if AverageAtEquilibrium(~v, m, M) < vi

then AverageAtEquilibrium(~v′, m, M) = AverageAtEquilibrium(~v, m, M).

(The proof relies on Theorem 4.1.)



6.5 AAR DSV never rewards insincerity

For any voting system, it is desirable to show that a voter can never gain a better outcome
by voting insincerely than by voting sincerely, however sincerity is defined. It turns out
that, when AverageAtEquilibrium(~v, m, M) is selected as the outcome, no voter i can gain
an outcome closer to the ideal ri by voting vi 6= ri instead of vi = ri, guaranteeing a strong
nonmanipulability property to AAR DSV:

Theorem 6.5. If ~v = [v1, v2, . . . vn] where v1 = r1 and ~v′ = [v′
1
, v′

2
, . . . v′n] where

v′
1
6= r1 and (∀i > 1) v′

i = vi, then |AverageAtEquilibrium(~v, m, M) − r1| ≤
|AverageAtEquilibrium(~v′, m, M)− r1|.

(The proof consists of four cases and relies on Theorems 6.3 and 6.4.)

7 Evaluation of AAR DSV systems

To simplify the evaluation of AAR DSV systems, we re-parameterize them by defining

Φa,b(~v) ≡ lim
x→a+

AverageAtEquilibrium

(

~v, b−
b

x
, b +

1− b

x

)

(The limit is needed for the a = 0 case; as a approaches 0, Φa,b(~v) approaches the bṽ outcome
defined in section 1.3.)

Any system that uses the outcome function Φa,b(~v) where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 has
the property that no voter can gain by voting insincerely. But it does not follow that any
values of a and b give equally desirable outcomes.

One approach to evaluating this continuous range of nonmanipulable systems is to take
the Average system as a benchmark and determine which Φa,b function comes nearest,
on average, to giving the Average outcome. Given a vote vector ~v, we can calculate the
Average outcome v̄ and the outcome Φa,b(~v) for many a, b combinations. For any particular
a and b, we can calculate the squared error from v̄: SEa,b(~v) = (Φa,b(~v) − v̄)2. If V =
{~v1, ~v2, ~v3 . . . ~vN} is a vector of N vote vectors, then we can find the root-mean-squared
error from Average, weighted by the number of ratings in each vote vector ~vi:

RMSEa,b(V) =

√

√

√

√

∑N
i=1
|~vi| · SEa,b(~vi)
∑N

i=1
|~vi|

Given some “training” vector V of vote vectors, we would like to choose a and b to minimize
RMSEa,b(V).

This approach requires a concrete source of vote-vector data or a distribution for gener-
ating such. The website Metacritic [1] offers ideal data for our purposes: Reviews for over
4000 films are summarized into ratings between 0 and 100. For example, one film3 has the
seven ratings 70, 70, 80, 80, 88, 88 and 100, which are easily converted into the vote vector
~v = [0.7, 0.7, 0.8, 0.8, 0.88, 0.88, 1]. Converting all films on Metacritic the same way gives us
a large vector V of vote vectors.4

Since there are two parameters, a and b, it is somewhat impractical to try all combina-
tions. But it may be desired to fix b = 0.5 to ensure a kind of symmetry: If (∀i) v′

i = 1− vi,

3The 1978 film Animal House.
4We use the data for the 4581 films mined from Metacritic on Thursday, 3 April 2008, that had at least

three critics rate them. Note that we are implicitly assuming that the rating data are sincere; unfortunately,
we know of no large data set gathered using a nonmanipulable rating protocol such as ours, so we must
hope that most critics are more interested in maintaining their professional reputations than in optimizing
a film’s Metacritic rating.



then (∀a) Φa,0.5(~v
′) = 1 − Φa,0.5(~v), so electorates that prefer low and high outcomes are

treated symmetrically. Fixing b = 0.5 and trying all 10001 evenly spaced values of a, we
find that a = 0.3240 (Figure 1) gives the minimum RMSE for the Metacritic data.

Figure 1: RMSE, varying a and fixing b = 0.5000
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Having fixed b = 0.5 and found the value of a that minimizes RMSE (0.3240), we can now
fix a = 0.3240 and find the value of b that minimizes RMSE, then fix b again accordingly
and continue in a hill-climbing fashion until we find a stable minimum. In practice, the
procedure is guaranteed to halt because the RMSE decreases at each step for which either
a or b changes.

Using this procedure on the Metacritic data and testing 10001 evenly spaced values of a or
b at each step, whether we start with a ∈ {0, 0.25, 0.5, 0.75} or with b ∈ {0, 0.25, 0.5, 0.75},5

we find a local RMSE minimum (approximately 0.03242) at a = 0.3647, b = 0.4820; such
a system is equivalent to running an Average election with rationally optimal voters and
allowing votes between m ≈ −0.8396 and M ≈ 1.9023.

Other preference domains may have very different properties and thus different ideal
values for a and b.

8 Related and future work

In this paper we have applied the DSV framework of Cranor and Cytron [9] to create a
large class of nonmanipulable rating systems, assuming only that each voter has a single-
peaked preference function over the bounded, one-dimensional outcome space. The single-
peaked assumption allows us to avoid the negative implications of the Gibbard-Satterthwaite
theorem [11, 15], making it possible to find nonmanipulable protocols that have no dictator.

Most relevant to our work is Moulin’s [14] result. He characterized the set of all non-
manipulable protocols that resolve a vector of real inputs into one real outcome, showing
that any such protocol is equivalent to adding some fixed set of n− 1 points to the n input
points and taking as the outcome the median of the combined set. It turns out that our
AverageAtEquilibrium(~v, m, M) is equivalent to adding the (evenly spaced) points

m +
1

n
(M −m), m +

2

n
(M −m), . . . m +

i

n
(M −m), . . . m +

n− 1

n
(M −m)

5Note that when a = 1, the outcome is simply AverageAtEquilibrium(~v, 0, 1) and does not depend on
the the b parameter, so different values of b cannot be compared. When b is set to 1, RMSE turns out to be
minimized at a = 1.



to the input points (which fall between 0 and 1) and taking the median of that set as the out-
come, so our set of AAR DSV systems is indeed a subset of Moulin’s set of nonmanipulable
protocols.

In future work we plan to explore higher-dimensional outcome spaces. The Median
system can be perhaps most naturally generalized to d > 1 dimensions by finding the point

t that minimizes
∑n

i=1
dist(t, vi), where dist(t, vi) =

(

∑d
j=1

(tj − vij)
2

)1/2

, the Euclidean

distance between t and vi. t is known as the Fermat–Weber point [18, 7]. When d > 1,
unlike in the one-dimensional case, it usually has a single optimum point even when n is
even (the only exception is an even number of collinear points). Unfortunately, there is no
computationally feasible exact algorithm to calculate the Fermat–Weber point in general [3],
but numerical approximation is quite easy [17, 6].

The Fermat–Weber point does not change when a point vi is moved farther away from t in
the direction of the vector from t to vi [16], so, in a sense, direction matters but not distance.
Because of this property, a näıve Average-style strategy for manipulating this Fermat–Weber
system fails, and any successful manipulation would have to move a sincere vote in some
other direction. Unfortunately, an insincere voter can indeed manipulate the Fermat–Weber
point to move closer to his or her ideal outcome [12, ch. 3]. In fact, Zhou [19] showed that
no protocol with effective outcome space of dimension d > 1 is generally nonmanipulable
when voters can have any single-peaked (concave) preference function.

The Average system is easily generalized to higher-dimension hypercubes by taking the
average of each coordinate, effectively calculating the centroid, the center of mass given
a set of unit masses. This generalization is equivalent to finding the point t that mini-
mizes

∑n
i=1

dist(t, vi)
2. The resulting system is equivalent to conducting d separate and

independent Average elections, and the results above for strategic behavior under the one-
dimensional Average system apply to the “election” for each coordinate. In particular,
if each voter has separable preferences [5] (preferences in one dimension are independent
of preferences in all other dimensions), conducting a d-dimensional AAR DSV election is
equivalent to conducting d parallel one-dimensional AAR DSV elections, and so gives a non-
manipulable system. Such a preference-function space is not abundant by Zhou’s definition.

The one-dimensional space between 0 and 1 can be generalized in other ways than
into hypercubes. For example, the outcome space could be the d-dimensional simplex (for
example, {(x, y, z) ∈ � 3 : x + y + z = 1}), which could describe the division of a limited
resource among several uses (such as a committee allocating a fixed sum among budget
items). Unfortunately, even when all voters’ preferences are separable, AAR DSV systems
may be manipulable—in a sense, dimensions are interdependent for the outcome space itself.
It may be, however, that no voter can move the outcome to one which is closer to ideal on
one dimension without moving it further on some other dimension. We plan to investigate
this “dominance”-nonmanipulability.

We would like to thank Steven Brams and the anonymous reviewers for their valuable
comments and suggestions on this work.
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