
Some Results on Approximating the Minimax Solution in Approval Voting

Rob LeGrand Evangelos Markakis Aranyak Mehta

Abstract

Voting is the most general scheme for preference aggrega-
tion in multi-agent settings involving agents of diverse pref-
erences. Here, we study a voting protocol for multi-winner
elections, called approval voting, and we investigate the com-
plexity of computing the minimax solution, concentrating on
elections for committees of fixed size. Given an approval vot-
ing election, where voters can vote for as many candidates as
they like, a minimax outcome is a committee that minimizes
the maximum Hamming distance to the voters’ ballots. As the
problem is NP-hard, we first provide two different algorithms
for which we prove that they achieve an approximation ratio
of 3. We then introduce and evaluate various heuristics based
on local search. Our heuristics have low running times (prov-
ably polynomial) and our experimental results show that they
perform very well on average, computing solutions that are
very close to the optimal minimax solutions. Finally, we ad-
dress the issue of manipulating minimax outcomes. We show
that even though exact algorithms for the minimax solution
are manipulable, we can have approximation algorithms that
are non-manipulable.

1 Introduction
Voting has been a very popular method for preference ag-
gregation in multi-agent environments. It is often the case
that a set of agents with different preferences need to make
a choice among a set of alternatives, where the alterna-
tives could be various entities such as potential committee
members, or joint plans of action. A standard methodology
for this scenario is to have each agent express his prefer-
ences and then select an alternative (or more than one al-
ternative in multi-winner elections) according to some vot-
ing protocol. Several decision making applications in AI
have followed this approach including problems in collabo-
rative filtering (Pennock, Horvitz, & Giles 2000) and plan-
ning (Ephrati & Rosenschein 1991; 1993).

In this work we focus on solution concepts for approval
voting, which is a voting scheme for committee elections
(multi-winner elections). In such a protocol, the voters are
allowed to vote for, or approve of, as many candidates as
they like. In the last three decades, many scientific societies
and organizations have adopted approval voting, including,
among others, the American Mathematical Society (AMS),
the Institute of Electrical and Electronics Engineers (IEEE)
and the Game Theory Society (GTS).

A ballot in an approval voting protocol can be seen as a
binary vector that indicates the candidates approved of by
the voter. Given the ballots, the obvious question is: what
should the outcome of the election be? The solution concept
that has been used in almost all such elections is the minisum
solution, i.e., output the committee which, when seen as a
0/1-vector, minimizes the sum of the Hamming distances
to the ballots. If there is no restriction on the size of the
elected committee this is equivalent to a majority vote on
each candidate. If there is a restriction, e.g., if the elected
committee should be of size exactly k, then the minisum
solution consists of the k candidates with the highest number
of approvals (Brams, Kilgour, & Sanver 2006).

Recently, a new solution concept, the minimax solution,
was proposed in (Brams, Kilgour, & Sanver 2004). The
minimax solution chooses a committee which, when seen as
a 0/1-vector, minimizes the maximum Hamming distance
to all ballots. When there is a restriction that the size of the
committee should be exactly k, then the minimax solution
picks, among all committees of size k, the one that mini-
mizes the maximum Hamming distance to the ballots.

The main motivation behind the minimax solution is to
address the issues of fairness and compromise. Since min-
imax minimizes the disagreement with the least satisfied
voter, it tends to result in outcomes that are more widely ac-
ceptable than the minisum solution. Also, majority tyranny
is avoided: a majority of voters cannot guarantee a specific
outcome, unlike under minisum. A further discussion on the
properties and the pros and cons of the minisum and the min-
imax solutions can be found in (Brams, Kilgour, & Sanver
2004; 2006).

In this work we address computational aspects of the min-
imax solution, with a focus on elections for committees of
fixed size. In contrast to the minisum solution, which is easy
to compute in polynomial time, finding a minimax solution
is NP-hard. We therefore resort to polynomial-time heuris-
tics and approximation algorithms.

We first exhibit two algorithms both of which achieve an
approximation factor of 3. We then propose a variety of lo-
cal search heuristics, some of which use the solution of our
approximation algorithms as an initial point. All our heuris-
tics run relatively fast and we evaluated the quality of their
output both on randomly generated data as well as on the
2003 Game Theory Society election. Our simulations show



that the heuristics perform very well, finding a solution very
close to optimal on average. In fact for some heuristics the
average error in the approximation can be as low as 0.05%.

Finally, in Section 5, we focus on the question of manip-
ulating the minimax solution. We show that any algorithm
that computes an optimal minimax solution is manipulable.
However, the same may not be true for approximation algo-
rithms.

1.1 Related Work
The minimax solution concept that we study here was in-
troduced by Brams, Kilgour and Sanver (Brams, Kilgour,
& Sanver 2004). In subsequent work by the same au-
thors (Brams, Kilgour, & Sanver 2006; Kilgour, Brams,
& Sanver 2007), a weighted version of the minimax so-
lution is studied, which takes into account the number of
voters who voted for each distinct ballot and the proximity
of each ballot to the other voters’ ballots. The algorithms
that are proposed in (Brams, Kilgour, & Sanver 2004; 2006;
Kilgour, Brams, & Sanver 2007) are all exponential, and this
is not surprising since the problem is NP-hard. Approxima-
tion algorithms have previously been established only for
the version in which there is no restriction on the size of the
committee (which includes as a possibility that no candidate
is elected). This variant is referred to as the endogenous
minimax solution and it also arises in coding theory under
the name of the Minimum Radius Problem or the Hamming
Center Problem and in computational biology, where it is
known as the Closest String Problem. In the context of com-
putational biology, it was shown in (Li, Ma, & Wang 1999)
that the endogenous version admits a Polynomial Time Ap-
proximation Scheme (PTAS), i.e., a (1 + ε)-approximation
for any constant ε. Other constant-factor approximations for
the endogenous version had been obtained before (Gasie-
niec, Jansson, & Lingas 1999; Lanctot et al. 2003). We
are not aware of any polynomial-time approximation algo-
rithms or any heuristic approaches for the non-endogenous
versions, i.e., in the presence of any upper or lower bounds
on the size of the committee. Complexity considerations
for winner determination in multi-winner elections have also
been addressed recently (Procaccia, Rosenschein, & Zohar
2007) but not for the minimax solution.

2 Definitions and Notation
We now formally define our problem. We have an election
with m voters and n candidates. Each ballot is a binary vec-
tor v ∈ {0, 1}n, with the meaning that the ith coordinate
of v is 1 if the voter approves of candidate i. For two bi-
nary vectors vi, vj of the same length, let H(vi, vj) denote
their Hamming distance, which is the number of coordinates
in which they differ. For a vector v ∈ {0, 1}n, we will
denote by wt(v) the number of coordinates that are set to
1 in v. The maxscore of a binary vector is defined as the
Hamming distance between it and the ballot farthest from
it: maxscore(v) ≡ maxiH(v, vi) where vi is the ith ballot.
We first define the problem in its generality.

Problem [Bounded-size Minimax (BSM(k1, k2))]
Given m ballots, v1, . . . , vm ∈ {0, 1}n, and 2 integers

k1, k2, with 0 ≤ k1, k2 ≤ n, find a vector v∗ such that
k1 ≤ wt(v∗) ≤ k2 so as to minimize maxscore(v∗).

Clearly BSM includes as a special case the endogenous
version, which is BSM(0, n), i.e., no restrictions on the size
of the committee. Also, since in some committee elections,
the size of the committee to be elected is fixed (e.g., the
Game Theory Society elections), we are interested in the fol-
lowing variant of BSM with k1 = k2 = k:

Problem [Fixed-size Minimax (FSM(k))] Given m
ballots, v1, . . . , vm ∈ {0, 1}n, and an integer k with
1 ≤ k ≤ n, find a vector v∗ of weight k so as to mini-
mize maxscore(v∗).

In this preliminary version, we focus on elections with
committees of fixed size and report our findings for FSM.
We briefly mention in the relevant sections throughout the
paper which results extend to the general BSM problem.

In the next Section, we use the standard notion of approx-
imation algorithms, defined below:

Definition 1. An algorithm for a minimization problem
achieves an approximation ratio (or factor) of α, if for ev-
ery instance of the problem the algorithm outputs a solution
with cost at most α times the cost of an optimal solution.

3 Approximation Algorithms
For the endogenous version of BSM, namely BSM(0, n),
NP-hardness has already been established in (Frances &
Litman 1997), where the problem is stated in the context
of coding theory. From this it follows easily that FSM is
also NP-hard. If there was a polynomial-time algorithm
for FSM(k), then we could run such an algorithm first with
k = 0, then with k = 1 and so on up to k = n and out-
put the best solution. That would give an optimal solution
for BSM(0, n). Hence FSM is also NP-hard. An alterna-
tive proof for the NP-hardness of FSM (and consequently
of BSM as well) via a reduction from VERTEX COVER was
also obtained in (LeGrand 2004).

FSM(k) can be solved in polynomial time if k is an ab-
solute constant, since then we can just go through all the(
n
k

)
different committees and output the best one. Also, if

m is an absolute constant then we can express the problem
as an integer program with a constant number of constraints,
which by a result of Papadimitriou (Papadimitriou 1981) can
be solved in polynomial time.

The standard approach in dealing with NP-hard problems
is to search for approximation algorithms. We will now
show that a very simple and fast algorithm achieves an ap-
proximation ratio of 3 for FSM(k), for every k. In fact, we
will see that the algorithm has a factor of 3 for approval vot-
ing problems with much more general constraints.

Before stating the algorithm we need to introduce some
more notation. Given a vector v, we will say that u is a
k-completion of v, if wt(u) = k, and H(u, v) is the mini-
mum possible Hamming distance between v and any vector
of weight k. It is very easy to obtain a k-completion for any
vector v: if wt(v) < k, then pick any k−wt(v) coordinates
in v that are 0 and set them to 1; if wt(v) > k then pick any
wt(v)− k coordinates that are set to 1 and set them to 0.



The algorithm is now very simple to state: Pick arbitrarily
one of the m ballots, say vj . Output a k-completion of vj ,
say u.

Obviously the algorithm runs in time O(n), independent
of the number of voters (recall n is the number of candi-
dates).
Theorem 1. The above algorithm achieves an approxima-
tion ratio of 3.

Proof. Let v∗ be an optimal solution (wt(v∗) = k) and let
OPT = maxscore(v∗) = maxiH(v∗, vi) be the maxi-
mum distance of a ballot from the optimal solution. Let
vj be the ballot picked by the algorithm and let u be the
k-completion of vj that is output by the algorithm. We
need to show that for every i, H(u, vi) ≤ 3OPT. By the
triangle inequality, we know that for every 1 ≤ i ≤ m,
H(u, vi) ≤ H(u, vj) +H(vj , vi). By applying the triangle
inequality again we have:

H(u, vi) ≤ H(u, vj) +H(vj , v
∗) +H(v∗, vi)

Since v∗ is an optimal solution, we have that H(v∗, vi) ≤
OPT and H(v∗, vj) ≤ OPT. Also since u is a k-
completion of vj , by definition H(u, vj) ≤ H(v∗, vj) ≤
OPT. Hence in total we obtain that H(u, vi) ≤ 3OPT, as
desired.

Remark 1. Note that if we know that there is at least one
voter of weight k, say wt(vj) = k, then we can prove that
the algorithm achieves a ratio of 2, since then u = vj and
we need to apply triangle inequality only once.
Remark 2. The algorithm can be easily adapted to give a
ratio of 3 for the BSM version too. We only need to mod-
ify the notion of a k-completion accordingly. In fact, for
BSM(0, n), we can show that the ratio will be 2.
Remark 3. Generalized Constraints: One may define an
approval voting problem with more general constraints. For
example, one may have constraints on the number of mem-
bers elected from a particular subgroup of candidates (quo-
tas), or constraints which require exactly one out of two par-
ticular candidates to be in the committee (XOR constraints).
Suppose, for any vote vector v, we can compute in polyno-
mial time a feasible-completion of v, which is a committee
that satisfies the constraints, and is closest to v in Hamming
distance. Then, we can extend our algorithm to this setting
in a natural manner, and prove that it provides a factor 3
approximation.

An undesirable property of this algorithm is that it is dic-
tatorial, i.e., we take a k-completion of some voter, and the
other voters’ preferences are not taken into account. We will
now suggest a different algorithm, which is non-dictatorial
and is a consequence of the following relationship between
BSM and FSM:
Theorem 2. Given a polynomial time α-approximation
algorithm for BSM(0, n), we can derive a (2α + 1)-
approximation algorithm for FSM(k), for any k.

Proof. Let A be the α-approximation for BSM(0, n). Con-
sider the following algorithm A′ for FSM(k): given an in-
stance I of the problem, let u be the outcome of algorithmA

(which can be of arbitrary weight). Output a k-completion
of u, say u′. We will show that u′ achieves a (2α + 1)-
approximation. Consider an arbitrary vote vi. Then by the
triangle inequality,

H(u′, vi) ≤ H(u′, u) +H(u, vi) (1)
Let OPT denote the optimal solution to FSM(k) and let
OPTBSM be the optimal solution for BSM(0, n) on the
same set of votes. Clearly OPTBSM ≤ OPT. Hence:

H(u, vi) ≤ α OPTBSM ≤ α OPT

We now analyze the term H(u′, u). Let v∗ be an opti-
mal solution for FSM(k). Because u′ is a k-completion of
u and because wt(v∗) = k, it follows by definition that
H(u′, u) ≤ H(v∗, u), which by triangle inequality is at
most H(v∗, vi) + H(vi, u). But since H(v∗, vi) ≤ OPT
we have:

H(u′, u) ≤ OPT+H(vi, u) ≤ (α+ 1)OPT

Hence inequality (1) now becomes:
H(u′, vi) ≤ (2α+ 1)OPT

It has been shown in (Li, Ma, & Wang 1999) that the en-
dogenous version, BSM(0, n), admits a Polynomial Time
Approximation Scheme (PTAS), i.e., for every constant ε,
there exists a (1+ ε)-approximation, which is polynomial in
n and m and exponential in 1/ε. This implies the following:
Corollary 3. For any constant ε > 0, the algorithm of (Li,
Ma, & Wang 1999) gives rise to a (3+ ε)-approximation for
FSM.

Proof. Fix ε > 0. Let δ = ε/2. Run the algorithm of (Li,
Ma, & Wang 1999) to get a (1 + δ)-approximation for
BSM(0, n) and then take a k-completion of the solution. By
Theorem 2 this is a 2(1 + δ) + 1 = 3 + ε approximation for
FSM.

It is not difficult to construct examples where the result of
Theorem 2 is tight. Although this does not improve the ratio
of our first algorithm, it may yield better outcomes since the
PTAS is not dictatorial and is based on integer programming
and rounding techniques that take into account all voters’
preferences.

We are not aware of any better approximation algorithm
for FSM. Before the PTAS for BSM(0, n), other constant-
factor approximations for BSM(0, n) had been obtained
in (Gasieniec, Jansson, & Lingas 1999) and (Lanctot et al.
2003). We believe that algorithms with such better factors
may also be obtainable for FSM(k).

4 Local Search Heuristics for FSM
Even though the algorithms of Section 3 give a theoreti-
cal worst-case guarantee (in fact, we may even have a bet-
ter performance in practice), a factor 3-approximation may
still be far away from optimal outcomes. Thus we focus on
polynomial-time heuristics, which turn out to perform very
well in practice, if not optimally, even though we cannot ob-
tain an improved worst-case guarantee. The heuristics that
we investigate are based on local search; some of them use
the 3-approximation as a starting point and retain its ratio.



4.1 A Framework for FSM Heuristics
Our overall heuristic approach is as follows. We start from
a binary vector (picked according to some rule) and then we
investigate if neighboring solutions to the current one im-
prove the current maxscore. The local moves that we allow
are removing some candidates from the current committee
and adding the same number of candidates in, from the set
of candidates who do not belong to the current committee:

1. Start with some c ∈ {0, 1}n.

2. Repeat until maxscore(c) does not change for n loop it-
erations:

(a) Let A be the set of all binary vectors reachable from
c by flipping up to p number of 0-bits of c to 1 and p
1-bits to 0, where p is an integer constant. (Note that c
will necessarily be a member of A.)

(b) Let A? be the set that includes all members of A with
smallest maxscore.

(c) Choose at random one member of A? and make it the
new c.

3. Take c as the solution.

It is obviously important that the heuristic find a solution
in time polynomial in the size of the input. In the worst
case, the loop in the heuristic could run for n iterations for
each step down in maxscore, so even if the maxscore of the
initial c is the largest possible, n, no more than O(n2) iter-
ations of the loop will be made. Each loop iteration runs in
O(mn2p+1) time, since the number of swaps to be consid-
ered is O(n2p) and calculating the maxscore of each takes
O(mn) time, so the worst-case running time for the heuristic
isO(mn2p+3), which is polynomial as long as p is constant.

This heuristic framework has two parameters: the start-
ing point for the binary vector c and the constant p. While
many combinations are possible, we will investigate using
four different approaches to determining the c starting point
and two values of p—1 and 2—resulting in eight specific
heuristics. The c starting points are

1. A fixed-size-minisum solution: the set of the k candidates
most approved on the ballots.

2. The FSM 3-approximation presented above: a k-
completion of a ballot.

3. A random set of k candidates.

4. A k-completion of a ballot with highest maxscore.

For approach 2, the ballot and k-completion are not cho-
sen randomly: Of the ballots with Hamming weight near-
est to k, the v∗ minimizing sumscore(v) ≡

∑
iH(v∗, vi)

is chosen, and bits flipped are chosen to minimize resulting
sumscore. The endogenous minimax equivalent of each of
these approaches was investigated in (LeGrand 2004).

We will use the notation hi,j to refer to the heuristic with
starting point i and p = j. For example, h3,1 is the heuristic
that starts with a random set of k candidates and swaps at
most one 0-bit with one 1-bit at a time.

4.2 Evaluating the Heuristics
We show that the heuristics find good, if not optimal, win-
ner sets on average. The approach is as follows. Given n,
m and k, some large number of simulated elections are run.
For each election, m ballots of n candidates are generated
according to some distribution. The maxscores of the opti-
mal minimax set and the winner sets found using each of the
heuristics are then calculated.

We used two ballot-generating distributions: “unbiased”
and “biased”. The unbiased distribution simply sets each bit
on each ballot to 0 or 1 with equal probability, like flipping
an unbiased coin. The biased distribution generates for each
candidate two approval probabilities, π1 and π2, between 0
and 1 uniformly at random. The ballots are then divided into
three groups. 40% of the ballots are generated according to
the π1 values; that is, each ballot approves each candidate
with probability equal to its π1 value. Another 40% of the
ballots are generated according to the π2 values, and the re-
maining 20% are generated as in the unbiased distribution.

We ran 5000 simulated elections for seven different con-
figurations, varying n, m, k and the ballot distribution. In
the tables of the results (next page), the last column gives
the results of running the heuristics 5000 times each on the
data from the 2003 Game Theory Society council election.

Table 1 gives the highest realized approximation ratio
(maxscore found divided by optimal maxscore) found over
all 5000 elections for each heuristic, our 3-approximation
(the dictatorial one, with ballot and flipped bits chosen at
random), the minisum set (for comparison), and a maximax
set. A maximax set is a set of size k that has the highest
possible maxscore; it can be found by choosing a ballot with
Hamming weight nearest to n − k, performing a (n − k)-
completion on it and then flipping its bits.

It can be seen that our 3-approximation in practice per-
forms appreciably better than its guarantee—its ratio was
less than 2 for every simulated election. As Table 1 shows,
the heuristics reliably find solutions with ratios well below 2
and the average ratios found, given in Table 2, show that the
performance of the heuristics is even more impressive.

We draw the following conclusions from our experiments.

• The heuristics perform well. Given the ballot distributions
we used, very rarely would there be a solution that is un-
acceptably poorer than the optimal minimax solution. In
particular, h2,1 and h2,2 vastly outperform the plain 3-
approximation (while retaining its ratio-3 guarantee).

• The heuristics perform significantly better on average
when p = 2 than when p = 1. Increasing p further can be
expected to improve performance further, at the expense
of increased running time.

• Comparing the performance of the heuristics with equal p,
all four perform similarly overall, but the best c-starting-
point approach on average seems to be the first (a fixed-
size-minisum solution); it significantly outperforms the
other three sometimes (e.g., when p = 1 in the unbiased-
coin cases with 50 ballots) and is never outperformed by
them with any statistical significance.



Table 1: Largest approximation ratios found for local search heuristics

n 20 20 20 24 20 20 24
k 10 10 10 12 10 10 12
m 50 200 800 50 50 200 161

ballots unbiased unbiased unbiased unbiased biased biased GTS 2003
minimax set 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

h1,1 1.1818 1.0769 1.0714 1.1538 1.2000 1.0909 1.0714
h2,1 1.1818 1.0769 1.0714 1.1538 1.2000 1.1818 1.0714
h3,1 1.1818 1.0769 1.0714 1.1538 1.2000 1.1818 1.0714
h4,1 1.1818 1.0769 1.0714 1.1538 1.2000 1.1818 1.0714
h1,2 1.0909 1.0769 1.0714 1.0769 1.1000 1.0833 1.0000
h2,2 1.0909 1.0769 1.0714 1.0769 1.1000 1.0833 1.0000
h3,2 1.0909 1.0769 1.0714 1.0769 1.1000 1.0833 1.0000
h4,2 1.0909 1.0769 1.0714 1.0769 1.1000 1.0833 1.0000

3-approx. 1.6667 1.4615 1.3571 1.6154 1.8182 1.5833 1.3571
minisum set 1.5455 1.4615 1.3571 1.6923 1.6364 1.5833 1.2143
maximax set 1.8182 1.5385 1.4286 1.8462 2.2222 1.8182 1.7143

Table 2: Average approximation ratios found for local search heuristics

n 20 20 20 24 20 20 24
k 10 10 10 12 10 10 12
m 50 200 800 50 50 200 161

ballots unbiased unbiased unbiased unbiased biased biased GTS 2003
minimax set 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

h1,1 1.0058 1.0320 1.0007 1.0093 1.0083 1.0210 1.0012
h2,1 1.0118 1.0365 1.0007 1.0147 1.0112 1.0251 1.0017
h3,1 1.0122 1.0370 1.0007 1.0151 1.0122 1.0262 1.0057
h4,1 1.0117 1.0364 1.0007 1.0149 1.0116 1.0262 1.0059
h1,2 1.0004 1.0129 1.0005 1.0011 1.0004 1.0025 1.0000
h2,2 1.0004 1.0164 1.0005 1.0014 1.0005 1.0029 1.0000
h3,2 1.0004 1.0164 1.0005 1.0018 1.0005 1.0031 1.0000
h4,2 1.0003 1.0167 1.0005 1.0014 1.0006 1.0029 1.0000

3-approx. 1.2477 1.1871 1.1204 1.2567 1.3121 1.2424 1.3571
minisum set 1.1650 1.1521 1.1060 1.1665 1.2119 1.1932 1.2143
maximax set 1.6746 1.4895 1.3343 1.7320 1.8509 1.6302 1.7143

5 Manipulation
Unfortunately, in addition to being hard to compute exactly,
the minimax solution is easily shown to be manipulable for
the FSM version.
Definition 2. Fix an approval voting algorithm A and a set
of ballots v = (v1, v2, ..., vm). Fix a voter i, and let v−i
denote the ballots of the rest of the voters. The loss Li

A(v)
of voter i is defined as H(vi, A(v)). Algorithm A is said to
be manipulable if there exist ballots v, a voter i, and a ballot
v′ 6= vi, s.t. Li

A(vi,v
−i) > Li

A(v
′,v−i).

Theorem 4. Any algorithm that computes an optimal solu-
tion for FSM is manipulable.

Proof. Consider the following set of sincere ballots:

00110, 00011, 00111, 00001, 10111, 01111

The minimax winner sets of size 2 are 00011 and 00101
with a maxscore of 2. The first voter, however, could manip-

ulate the result by voting the insincere ballot 11110. In that
case, it can be checked that the optimal solution of size 2 is
00110, which is exactly the most preferred outcome of the
first voter.

An analogous example for the endogenous version was
provided in (LeGrand 2004). These examples illustrate a
general guideline to manipulating a minimax election: If
there are candidates of which the majority disapproves, a
voter may be able to vote safely in favor of those candi-
dates to force more agreement with his relatively controver-
sial choices.

Although algorithms that always compute an optimal
minimax solution are manipulable, the same may not be true
if we allow approximation algorithms. The following theo-
rem shows that we can have nonmanipulable algorithms if
we are willing to settle for approximate solutions.

Theorem 5. The voting procedure that results from using



the first 3-approximation algorithm described in Section 3 is
nonmanipulable.

Proof. The algorithm picks an arbitrary ballot vj and out-
puts a k-completion of vj . For a voter i, if the algorithm did
not pick vi, then the voter cannot change the output of the al-
gorithm by lying. Furthermore, if the algorithm did pick vi,
then the best outcomes of size k for vi are precisely all the
k-completions of vi. Therefore, by lying, the voter cannot
possibly alter the outcome to his benefit.

The above theorems give rise to the following question:
Question 1. What is the smallest value of α for which there
exists a nonmanipulable polynomial-time approximation al-
gorithm with ratio α?

Another interesting question is whether there exist algo-
rithms which are NP-hard to manipulate (i.e., although they
are manipulable, the voter would have to solve an NP-hard
problem in order to cheat). See (Bartholdi III, Tovey, &
Trick 1989; 1992) as well as more recent work (Conitzer,
Lang, & Sandholm 2003; Conitzer & Sandholm 2002; 2003;
Elkind & Lipmaa 2005) along this line of research. In an-
other recent work (Procaccia & Rosenschein 2006), average-
case complexity is introduced as a complexity measure for
manipulation instead of worst-case complexity.

6 Discussion and Future Work
There are still many interesting directions for future re-
search. In terms of heuristic approaches, we are planning
to adjust our heuristics for the weighted version of the min-
imax solution, as introduced in (Brams, Kilgour, & Sanver
2006). This version takes into account both the number of
voters that vote each distinct ballot and the proximity of each
ballot to the other voters’ ballots. We are also investigating
variations of local search that may improve even more the
performance, e.g., can there be a better starting point in our
heuristics? Another interesting topic would be to compare
local search with other approaches that could be adapted for
our problem, like simulated annealing or genetic algorithms.

In terms of theoretical results, the most compelling ques-
tion is to determine the best approximation ratio that can be
achieved in polynomial time for the minimax solution. The
questions stated in Section 5 regarding manipulation would
also be interesting to pursue.

References
Bartholdi III, J. J.; Tovey, C. A.; and Trick, M. A. 1989.
The computational difficulty of manipulating an election.
Social Choice and Welfare 6:227–241.
Bartholdi III, J. J.; Tovey, C. A.; and Trick, M. A. 1992.
How hard is it to control an election? Mathematical Com-
putational Modeling 16(8/9):27–40.
Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2004. A
minimax procedure for negotiating multilateral treaties. In
Wiberg, M., ed., Reasoned Choices: Essays in Honor of
Hannu Nurmi. Finnish Political Science Association.
Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2006. A
minimax procedure for electing committees. manuscript.

Conitzer, V., and Sandholm, T. 2002. Complexity of ma-
nipulating elections with few candidates. In Proceedings of
the National Conference on Artificial Intelligence (AAAI),
314–319.
Conitzer, V., and Sandholm, T. 2003. Universal voting pro-
tocol tweaks to make manipulation hard. In Proceedings of
the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI), 781–788.
Conitzer, V.; Lang, J.; and Sandholm, T. 2003. How many
candidates are needed to make elections hard to manipu-
late? In Proceedings of the 9th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-03), 201–
214.
Elkind, E., and Lipmaa, H. 2005. Hybrid voting protocols
and hardness of manipulation. In The 16th Annual Interna-
tional Symposium on Algorithms and Computation (ISAAC
2005), 206–215.
Ephrati, E., and Rosenschein, J. 1991. The clarke tax as a
consensus mechanism among automated agents. In AAAI,
173–178.
Ephrati, E., and Rosenschein, J. 1993. Multi-agent plan-
ning as a dynamic search for social consensus. In IJCAI,
423–429.
Frances, M., and Litman, A. 1997. On covering problems
of codes. Theory of Computing Systems 30:113–119.
Gasieniec, L.; Jansson, J.; and Lingas, A. 1999. Efficient
approximation algorithms for the Hamming center prob-
lem. In SODA.
Kilgour, D. M.; Brams, S. J.; and Sanver, M. R. 2007. How
to elect a representative committee using approval ballot-
ing. In Simeone, B., and Pukelsheim, F., eds., Mathemat-
ics and Democracy: Recent Advances in Voting Systems
and Collective Choice. Springer, forthcoming.
Lanctot, J.; Li, M.; Ma, B.; Wang, S.; and Zhang, L. 2003.
Distinguishing string selection problems. Information and
Computation 185:41–55.
LeGrand, R. 2004. Analysis of the minimax procedure.
Technical Report WUCSE-2004-67, Department of Com-
puter Science and Engineering, Washington University, St.
Louis, Missouri.
Li, M.; Ma, B.; and Wang, S. 1999. Finding similar regions
in many strings. In STOC, 473–482.
Papadimitriou, C. H. 1981. On the complexity of integer
programming. Journal of the ACM 28(4):765–768.
Pennock, D.; Horvitz, E.; and Giles, C. L. 2000. Social
choice theory and recommender systems: Analysis of the
axiomatic foundations of collaborative filtering. In AAAI,
729–734.
Procaccia, A. D., and Rosenschein, J. S. 2006. Junta distri-
butions and the average-case complexity of manipulating
elections. In AAMAS, 497–504.
Procaccia, A. D.; Rosenschein, J. S.; and Zohar, A. 2007.
Multi-winner elections: Complexity of manipulation, con-
trol and winner-determination. In IJCAI.


