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Abstract
Java has recently joined C and C++ as a relatively high-level
language suitable for developing real-time applications. Java’s
garbage collection, while generally a useful feature, can be prob-
lematic for real-time applications if collection occurs with unpre-
dictable frequency and latency.

TheReal-Time Specification for JavaTM (RTSJ) incorporates
a scoped-memorymodel, akin toregions, that is not subject to
garbage collection. However, applications are subject to strict
rules concerning how objects can reference each other in scoped
memory. Unfortunately, almost all extant Java code, including
Java’s vast and useful runtime libraries, will not execute properly
in scoped-memory areas without significant modification.

In this paper, we show that programs written in a pure functional
programming language can be executed in a provably safe manner
using scoped memory in RTSJ. This new connection allows extant
implementations of important abstract data types to migrate safely
to RTSJ. We also explore the effect of RTSJ’s referencing rules on
the asymptotic, real-time behavior of some abstract data types.

Categories and Subject DescriptorsD.3.4 [Processors]: Mem-
ory Management; D.3.2 [Storage Management]: Garbage collec-
tion

General Terms Algorithms, Management, Memory, Real-time,
Data structures

Keywords Scoped Memory, Real-time Java, Memory Manage-
ment, Programming Languages, Performance Analysis, Functional
Programming

1. Introduction
Real-time applications require predictable memory-management
performance, which includes the cost of storage allocation, deal-
location, and (for the relevant languages) the frequency and latency
of garbage collection. While real-time applications could be writ-
ten in languages that do not offer garbage-collection capabilities,
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applications are often a mixture of hard and soft real-time compo-
nents. Since its advent in 1995 [1, 11], developers have been ex-
ploring ways to use Java for real-time programming, including its
garbage collection, to the extent that it does not preclude real-time
performance.

To broaden the use of Java as a real-time programming lan-
guage, the Real-Time for Java Expert Group issued the RTSJ [5],
which provides extensions to Java in support of real-time program-
ming without changing the basic structure of the language. Instead,
new class libraries were added to realize real-time features (such
as periodic threads and timers) and some extensions were intro-
duced to the Java Virtual Machine (JVM) to enforce the memory-
management properties of the RTSJ discussed below.

In addition to the heap, where dynamic storage allocation oc-
curs, the RTSJ includes specialized memory areas for dynamic
memory allocation: immortal memoryand scoped-memory ar-
eas [5]. Objects allocated in those memory areas are never
subjected to garbage collection. Objects in immortal memory
are collected only when the application terminates, regardless
of their liveness. Objects allocated in a scoped-memory area
are collecteden massewhen all threads that entered the scope
exit it. Scoped-memory areas are best used withNoHeapRe-
altimeThread (NHRT) [5], which are guaranteed not to be pre-
empted by garbage collection.

Use of scoped-memory areas is not without additional cost or
burden, as references between objects in the RTSJ’s memory areas
are subject to certain restrictions. Failure to abide by these restric-
tions may result in runtime exceptions in the offending thread(s),
from which recovery is not possible. While the RTSJ enables Java
code that avoids garbage collection to be written, porting or au-
thoring code in the RTSJ can be awkward. In Section 3, we show
that there is generally no guarantee that an RTSJ application will
execute without scope-referencing errors.

While a space-efficient scoped-memory scheme can be derived
for a given run of an RTSJ application [10], that scheme may be
unsuitable for other executions of the same application. Static
analysis [8] can determine scopes suitable for all executions, but the
analysis is necessarily approximate and the resulting scopes may
not accommodate sufficient storage reclamation.

Remediation can be found using subsets [14] of RTSJ, annota-
tions attached to RTSJ programs [6], or a real-time garbage collec-
tor [4]. Even at its best, each of those approaches has its skeptics,
and there are (hard real-time) applications for which developers in-
sist they must avoid automatic garbage collection. Some among
these developers use RTSJ inlieu of garbage collection.

This paper articulate a correspondence between the functional
programming paradigm and the RTSJ that allows extant code in the
functional programming paradigm to be moved to RTSJ’s scoped-
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memory model without fear of runtime errors. Such correspon-
dence may be insightful to developers who insist on using RTSJ.
The rest of the paper is organized as follows. Section 2 presents
RTSJ’s scoped-memory areas. Section 3 presents our main result:
programs written in a pure functional programming language can
be executed safely in RTSJ scoped-memory areas. Sections 4, 5, 6,
7 and 8 provide analysis of scoped-memory areas. Section 9 offers
concluding remarks and Section 10 acknowledges those who have
assisted in preparation of the final draft of the paper.

2. RTSJ’s memory management
One of the most interesting features of the RTSJ is its memory
management model based onscoped-memory areas(or scopes for
short) [17]. A scope is a fixed-size, contiguousregion[18] of mem-
ory, with a reference count of the number of threads active in the re-
gion. This memory model ensures developers of timely reclamation
of objects and predictable memory performance. But this comes at
the cost of learning an unfamiliar programming model—a restric-
tive model that relies on the use of scopes. These new scopes were
designed to meet two very important requirements [17]: providing
predictable allocation and deallocation performance, and ensuring
that real-time threads do not block when memory is reclaimed by
the virtual machine.

Figure 1. Scoped-memory single-parent rule.A is the parent of or
outer scope for bothB andC

To meet these requirements, the RTSJ ensures that objects in
a scope are not deallocated individually. Instead, the entire scope
is collecteden massewhen all threads that entered the scope exit
it. Since a scope is a fixed-size region of memory from which
objects are allocated, at instantiation the size of a scope is specified
in bytes and cannot be changed. Each scope can be entered by
multiple threads and each thread can allocate objects within a
scope it has entered and communicate with other such threads by
shared variables. A new scope can also be instantiated by a thread
executing within its current scope. This behavior is known as the
nesting of scopes and such nesting is controlled by the order in
which threads enter the scopes.

Consider Figure 1 for example, which shows two threads, each
of which has entered ScopeA before entering any other scope.
When ThreadT1 enters ScopeB, A becomesB’s parent. Similarly,
T2 causesA to becomeC ’s parent. RTSJ allows a scope to have
only one parent. Thus, ThreadT1 cannot enter ScopeC unless it
first exits ScopeB, an action that renders ScopeB thread-free and
thus collectible. Inter-scope references are allowed only from a
descendant scope to an ancestor scope. As depicted in Figure 1, an
object in ScopeB could reference any object in ScopeB or Scope

A, but references between scopesB andC are not allowed, nor are
references fromA to eitherB or C.

To take advantage of scopes, the RTSJ defined a new type of
thread called NHRT. NHRTs cannot allocate objects in the garbage-
collected heap, nor can they reference objects in the heap. These
constraints were added to prevent NHRTs from experiencing delay
due to the locking of heap objects during garbage collection [10].
NHRTs have the highest priority among all threads and can preempt
even the garbage collector.

Table 1 summarizes the referencing constraints placed on ob-
jects in certain memory areas. These constraints do not apply only
to objects, but also to threads so that real-time threads do not block
when the JVM reclaims objects.

3. Functional programs and RTSJ
Programs written in RTSJ can avoid garbage collection, but they
may suffer from exceptions caused by RTSJ-inappropriate memory
accesses and single-parent-rule violations. In this section, we ar-
ticulate a new and interesting relationship between RTSJ programs
and functionalprograms. The result of our findings offers RTSJ
developers some relief in migrating extant functional implementa-
tions of popular data structures to RTSJ.

We say an RTSJ programP is scope-safeif no execution ofP
can issue anyillegalAssignment() or memoryCycle() excep-
tions. Such exceptions are issued if the program fails to follow the
scope-access rules discussed in Section 2.

THEOREM 3.1. Static determination of the scope-safety of an
RTSJ program is undecidable.

Proof: By reduction from the halting problem:Given an encoding
of a Turing machineT and its inputw, we construct an RTSJ
programP as follows:

• P simulatesT onw by interpretingT in standard Java: no RTSJ
features are used.

• If T should halt onw, thenP instantiates two scoped-memory
areas,A andB, whereA is the parent ofB. P next issues a
reference fromA to B.

Clearly,P generates anIllegalAssignmentError if and only if
T halts onw. Thus, deciding (statically) thatP halts also decides
thatT halts on inputw, which contradicts the undecidability of the
halting problem.

Theorem3.1 implies that a compiler cannot generally detect
programs that would execute without error in Java but fail due
to scope errors in RTSJ. Extant responses to this problem can be
summarized as follows:

• A program can be written in a subset of RTSJ that provably
avoids scope errors [14], or annotations can be attached to RTSJ
programs so that a compiler can reason about scope-safety [6].

While this approach can be successful, an application must es-
sentially be rewritten to conform with restrictions or to supply
annotations. Moreover, a developer must understand the appli-
cation at a depth sufficient to modify the application correctly.

Java’s extensive libraries offer significant functionality for de-
velopers, but they are inherently unsuitable for use in RTSJ’s
scoped-memory areas. Rewriting the libraries for RTSJ is a
daunting task, with no real guarantee of correctness or effi-
ciency.

• Scopes can be avoided by using ordinary Java with a real-
time garbage collector [4]. While this approach avoids having
to rewrite an application, certain program properties must be
asserted or analyzed [12] to configure the automatic garbage
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Objectsin Referenceto Heap Referenceto Immortal Referenceto Scoped
Heap Allowed Allowed Not allowed

Immortal Allowed Allowed Not allowed
Scoped Allowed Allowed Allowed if same, outer, or shared scope

Table 1. Reference rules for RTSJ memory areas [5]. Objects in the heap are allowed to reference objects in immortal memory, but not
objects in scoped memory. Bollellaet. al [5] discuss outer and shared scopes in detail.

collector so that it sufficiently paces the application’s storage
needs. Some time efficiency will be lost, as a predictable share
of the CPU must be given to the garbage collector. Some space
efficiency is also lost, as the heap must be sufficiently over-
provisioned to mitigate the collector’s share of the CPU.

Even at its best, this approach has its skeptics, and there are
(hard real-time) applications for which developers believe they
must avoid automatic garbage collection. But this approach
works well provided that the pause times (currently in the mil-
liseconds) are acceptable [3] and that certification is possible
with the collector.

As an alternative to modifying Java programs to be RTSJ-safe, we
consider an apparently different programming paradigm and show
that programs written in that paradigm can be easily moved to RTSJ
and enjoy scope-safety.

Functional programming languageshave emerged as an alter-
native to the more prevalent style of programming languages (in-
cluding Java and RTSJ) in which state, and mutation of state, dom-
inate the design and construction of programs. Lisp [13] is per-
haps the earliest example of a practical functional programming
language still in use today, and Backus’s Turing lecture [2] inspired
generations of research on functional programming languages.

The property of a pure Lisp program most relevant to our work
concerns its mathematical transparency: Lisp expressions can be
manipulated mathematically, because the symbols of a symbolic
expression cannot change value unexpectedly. Languages like pure
Lisp achieve this property by allowing names to be associated with
expressions at most once. This “single assignment” rule allows
mathematical substitution of a program’s names but also implies
the following property: in terms of the order of assignment of
expressions to names, the expression assigned to a given name
can reference only those names that are strictly older than the
assigned name. We leverage that property to build scope-safe RTSJ
functions.

We use Lisp as an example, but extensions to other pure func-
tional programming languages are straightforward. Memory is al-
located in Lisp programs by acons operator, which creates a mem-
ory cell containing at most two references to extant storage. We
realize a Lisp program’s storage allocation in RTSJ as follows:

• The RTSJ program prepares to simulate the Lisp program by
creating a NHRT in the usual manner. The details need not be
provided here, except to say that the program is subsequently
able to create scoped-memory areas.

• Eachcons operator in the Lisp program is simulated by cre-
ating and entering a new scoped-memory area with sufficient
storage for two references (which we assume could also accom-
modate non-reference data such as constants). The references
for a cons cell must be known in the Lisp program when the
cons cell is instantiated; we populate the RTSJ scope with pre-
cisely those references.

Careful adaptation of functional code is required for code mi-
gration to RTSJ to be worthwhile. While the assumption above of
one-scope-percons-cell is inefficient in practice, this simplifying
assumption allows for easy exposition and analysis. This assump-

tion also allows us to reason about the nature of storage allocated
in the corresponding RTSJ program:

• No scoped-memory area will overflow. This follows from the
construction of the scoped-memory areas. Each is populated
once and for always by the singlecons cell that prompted
creation of the scope.

• All references created in this manner are scope-safe, as proven
by the following theorem.

THEOREM 3.2. The RTSJ realization of a Lisp program is scope-
safe.

Proof: By contradiction:If a scope-referencing error occurs, one
of the following must be its cause:

• A reference is made to scoped memory from an unsuitable
memory area (the generic heap). If so, then the program did
not launch the NHRT as described above.

• An inappropriate reference is made between scoped-memory
areas. There are two cases:

The areas are not in an ancestor-descendant relationship.
This is a contradiction, since all scopes are created with
linear ancestry.

The reference is made from an ancestor scope to a descen-
dant scope. This is a contradiction, since the functional pro-
gram can only have newer cells reference older cells.

An important consequence of Theorem 3.2 is that an RTSJ de-
veloper can consider migration of extant code written in a pure
functional language for deployment under RTSJ, without fear of
scoped-memory referencing errors at runtime. As described in
Sections 5–8, data structures such as lists and heaps can be im-
plemented in scopes based on their realization in a functional pro-
gramming language.

Code migrated as described above creates a linear chain of
scopes—one for eachcons cell. However, the thread entering those
scopes never retreats, so the resulting program never deallocates
storage. In practice, some form of storage reclamation is necessary.
Due to space limitations, we summarize our approaches as follows:

• At any moment, the RTSJ application could suspend its primary
activity and enter a phase in which it traces program references
through the scope chain, copying the resulting objects into a
new chain of nested scopes. Any objects not referenced by
the program would not be copied. Such a phase essentially
emulates a copying garbage collector, but the intent of using
RTSJ with scoped-memory areas is to avoid garbage collection.

• The nature of object allocation in pure functional programs
guarantees that objects cannot have cyclic references. There-
fore, reference-counting can sufficiently identify scopes that are
no longer in use. The scope chain can then be compacted by
copying as described above.

• Allocating scopes in a chain guarantees that a new object will
be able to reference any previously created object, but this ap-
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proach is needlessly conservative. Since in a functional pro-
gram we know which object a new object will reference when
it is created (and since references are immutable) we can allo-
cate its scope accordingly: When a new object is created, if it
is a non-referencing object or it references nil, it can be placed
in a new child scope of a common-root parent scope; if it ref-
erences another existing object, it can be placed in a new child
scope of that object’s scope. This approach would create a tree
of scopes rooted at one common parent scope. An entire scope
chain could then be reclaimed without having to trace or copy
a large chain. This approach is closely related tocontaminated
garbage collection[7].

Thus, while the pure-functional implementations can serve as a
basis for code migration, more work is necessary to obtain space-
efficient RTSJ implementations. In Sections 5–8, we consider live-
ness issues for each particular data structure, and each is mindful of
reclaiming storage where possible. Generally, liveness of a given
data structure, in the context of a real application that uses multiple
data structures, must be considered to determine a more sophis-
ticated scope structure and to determine when scopes should be
exited so that storage can be reclaimed.

In addition to the storage-reclamation problem, a data structure
migrated without due consideration may be unsuitable for a real-
time application. The rest of this paper provides examples that
illustrate the advantages and pitfalls of code migration for real-time
applications.

4. Methodology
As an example of migrating functional language implementations
to RTSJ, we consider some of the data structure implementations
due to Okasaki [15, 16]. Because they were developed for general
use, and without regard to real-time requirements, the primary
consideration of merit was the normativeaveragerunning time,
analyzed over a typical usage pattern.

For some of the data structures (such as the stack), deploy-
ment in a real-time context is appropriate. In such cases, the data
structure’s average running-time complexity is an indication of the
worst-caserunning times that might be seen over the life of the
data structures. However, for others (such as the queue), implemen-
tation in a functional programming language can have reasonable
average-case performance with occasionally poor worst-case per-
formance. Because real-time applications must budget for worst-
case conditions, it is important to analyze a data structure’s migra-
tion from the functional programming paradigm to RTSJ with an
understanding of the resulting asymptotic worst-case behavior.

In Sections 5 and 6 we suggest particular RTSJ implementa-
tions for the stack and queue abstract data types and analyze their
time-complexities. RTSJ scopes (and functional programming lan-
guages) essentially behave in a stack-like fashion. As such, an
RTSJ implementation for stack follows naturally. Our RTSJ queue
implementation was inspired by Okasaki’s [15] functional imple-
mentation and time-complexity analysis. Both have been care-
fully crafted to have properties desirable for real-time applications.
These results were also documented by Defoeet. al.[9].

In Sections 7 and 8 we use the transformation described in
Section 3 to migrate functional programming implementations of
data structures and their time-complexity analyses to RTSJ.

5. Stack analysis
Here we present a scoped-memory implementation of the stack
abstract data type and analyze it. Astackis an ADT that operates on
theLast-In-First-Out(LIFO) principle. One end of a stack, called
the top-of-stack, is used for each stack operation. The fundamental
operations are:

1. IS-EMPTY(S) - an operation that returns the binary value
TRUE if stackS is empty,FALSE otherwise.

2. PUSH(S, x) - an operation that puts elementx at the top of
stackS.

3. POP(S) - an operation that removes the element at the top of
stackS and returns it. If the stack is empty the special pointer
valueNULL is returned.NULL is used to signify that a pointer
has no target.

We are most concerned about implementing stack in scoped mem-
ory. However, we first present an implementation in heap memory
for the sake of comparison.

5.1 Typical implementation of stack

Several data structures, including the singly linked list, can be used
to implement a stack in the heap. The IS-EMPTY operation checks
whether the top-of-stack points to NULL. The PUSH operation
adds a new element to the top-of-stack, and the POP operation
updates the top-of-stack and returns the topmost element. Each
of these fundamental operations requiresT (n) = O(1) time using
a singly-linked list.

5.2 Scoped-memory implementation of stack

For a scoped-memory implementation of stack we make the fol-
lowing assumptions:

1. Each applicationA that manages a stackS is fully compliant
with the RTSJ.

2. A has a single threadTa, which is an instance of NHRT.
RTSJ allows multiple threads to share data structures as long
as all threads enter scopes in the same order. This simplifying
assumption of a single thread is made only for easy exposition
and analysis.

3. A executes on an RTSJ-compliant JVM.

4. Ta can legally access stackS and the elements managed byS.

5. Before an elementx is pushed on stackS, a new scopes is first
instantiated to storex, andTa enterss.

Assumption 5 is relevant for the purpose of complexity analy-
sis. Although we do not suggest one scope per element in an actual
implementation, here we are concerned about worst-case analysis.
Storing a single element in a scope simplifies analysis and yields
the smallest amount of unnecessarily live storage in scoped memo-
ries for this particular data structure. Pseudocode and analysis for
the fundamental stack operations follow.

5.2.1 IS-EMPTY

We assume that there is aTOS field in each scope that points to the
top-of-stack element. If theTOS field in the current scope points to
the stack objectS (a sentinel used for indicating the empty stack),
then the application threadTa is executing in the scope containing
S. Thus,S contains no elements, so the stack is empty. Ifc1 is the
time required to execute line 1 of IS-EMPTY then the worst-case
running time of IS-EMPTY isT (n) = c1 = O(1).

IS-EMPTY(S)
1 return TOS = S

Figure 2. Procedure to test if the stack is empty—scoped-memory imple-
mentation.
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5.2.2 PUSH

The PUSH operation depicted in Figure 3 is equivalent to the fol-
lowing sequence of basic operations performed by the application
threadTa. From the current scopeTa instantiates a new scopesm.
Ta enterssm then sets theTOS field in sm to point to elementx.

PUSH(S, x)
1 sm ← new ScopedMemory(size)
2 enter(sm, Ta)
3 TOS ← x

Figure 3. Procedure to push an element onto the stack—scoped-memory
implementation.size ≥ |x|+ |TOS|.

Assuming each linei in PUSH requiresci time for execution,
the worst case execution time for PUSH is given byT (n) =
c1 + c2 + c3 = O(1). The correctness of this result is based on
the fact that each line is executed once per invocation. Because
a scope has a limited lifetime dictated by the reference count of
threads executing in it,Ta is not allowed to exitsm. To ensure
thatTa keepssm live, Ta does not return from theenter() method
in line 2 of Figure 3. ShouldTa return from theenter() method,
the thread reference-count ofsm would drop to zero,sm would be
collected, and the PUSH operation would fail.

5.2.3 POP

The POP operation returns theTOS element if one exists and
NULL otherwise. Assuming each linei of the POP operation
(Figure 4) requiresci time to execute, the worst-case execution time
for the POP operation is given asT (n) = O(1).

POP(S)
1 if IS-EMPTY(S)
2 then x← NULL
3 elsex← TOS
4 return x

Figure 4. Procedure to pop the topmost element off the stack—scoped-
memory implementation.

After popping the stack,Ta must return from theenter()
method of line 2 of Figure 3. We assume for all practical purposes
that returning from theenter() method takesO(1) time. The new
top-of-stack becomes theTOS element of the parent scope,i.e.,
the parent of the scope that contained the popped element.

5.3 Cumulative analysis for stack

Here we consider an intermixed sequence ofn PUSH and POP
operations on a stack instance. We analyze this sequence of oper-
ations for a singly-linked-list implementation in the heap and for
a scoped-memory implementation of stack. Letn denote the total
number of operations and letm denote the number of PUSH op-
erations. The number of POP operations is thus given byn − m
wheren − m ≤ m ≤ n. The worst-case running time for the
singly-linked-list implementation of the intermixed sequence of op-
erations is computed as

T (n) = Tpush(m) + Tpop(n − m)

= m ∗ c1 + (n − m) ∗ c2

= mc1 + nc2 − mc2

= (c1 − c2)m + c2n

= O(n)

For a scoped-memory implementation the running time for PUSH
or POP isO(1). Thus, the running time for the intermixed sequence
of operations in the context of a scoped-memory implementation is
given byT (n) = O(n).

5.4 Discussion

The linked-list implementation in the heap yieldsT (n) = O(1)
worst-case execution time for each stack operation. The scoped-
memory implementation also yieldsT (n) = O(1) worst-case
execution time for each operation. The problem of running an
intermixed sequence ofn PUSH and POP operations, yields a
worst-case running time ofT (n) = O(n) for each implementation,
as expected. Given a particular program that uses a stack, the
programmer can thus choose between these two implementations.

Although a singly-linked-list implementation works well in the
heap, pointer manipulation can affect the proportionality constants
of the running time for each operation. Garbage collection can
also interfere with the running times of stack operations if the
application executes in a heap that is subject to garbage collection.

A scoped-memory implementation, while good in real-time en-
vironments, comes at the cost of learning a new, restrictive pro-
gramming model. Real-time programmers, however, can benefit
from the timing guarantees promised by the RTSJ. Moreover, the
memory used by a scoped-memory implementation of stack at any
instant during execution is proportional to the number of elements
on the stack at that instant.

6. Queue analysis
Our scoped-memory implementation of the queue abstract data
type uses an approach similar to Okasaki’s [15] functional-language
implementation in that a queue is simulated as a pair of stacks. The
queueADT operates on theFirst-In-First-Out (FIFO) principle.
The fundamental operations for a queue are:

1. ISQ-EMPTY(Q) - an operation that returns the binary value
TRUE if queue Q is empty,FALSE otherwise.

2. ENQUEUE(Q, x) - an operation that adds elementx to therear
of queueQ.

3. DEQUEUE(Q) - an operation that removes the element at the
front of queueQ and returns it. If the queue is empty,NULL is
returned.

First, we present an implementation of queue in heap memory.

6.1 Typical implementation of queue

One typical implementation of the queue ADT in the heap uses a
singly-linked-list data structure with two special pointers,front and
rear. The ISQ-EMPTY operation checks whetherfront points to
NULL. The ENQUEUE operation adds a new element to therear
end of the linked list and updates therear pointer. The DEQUEUE
operation updates thefront pointer and returns the element that was
at the front of the linked list. Each of these fundamental operations
takes timeT (n) = O(1).

6.2 Scoped-memory implementation of queue

Consider execution of an applicationA that manages a queue in-
stance in an RTSJ scoped-memory environment. Efficient execu-
tion of A depends on proper management of memory, which is a
limited resource. AssumeA uses a stack of scoped-memory in-
stances to manage the queue. Assume also, for the purpose of
worst-case analysis, that a queue element resides in its own scope
when added to the queue. A service stack with its own NHRTT1

is used to facilitate the ENQUEUE operation. See Figure 5 for a
representation of a queue instance. IfT0 is the application thread,
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then T0 is a NHRT. Detailed analysis of the fundamental queue
operations follows.

Figure 5. Queue representation in an RTSJ scoped-memory environment.
Rounded rectangles represent scoped-memory instances and circles repre-
sent object instances.T0 is the application thread andT1 services the stack.
The arrows pointing downward represent legal scope references. Thesync
field/object is a synchronization point forT0 andT1. Ei denotes element
i. On the queue,Ei is a reference to elementi.

6.2.1 ISQ-EMPTY

The current scope contains afront field that points to the front
of the queue. An empty queue is a queue with no elements.
Emptiness, in Figure 6, is illustrated by thefront field of the current
scope pointing to the queue object itself. Assuming that the running
time of the lone line of ISQ-EMPTY isc1, the worst-case running
time of ISQ-EMPTY is given asT (n) = c1 = O(1).

ISQ-EMPTY(Q)
1 return front = Q

Figure 6. Procedure to test if the queue is empty—scoped-memory im-
plementation.

6.2.2 DEQUEUE

The DEQUEUE operation removes the element at the front of the
queue and returns it if one exists. Otherwise, it returnsNULL. A
close examination of the DEQUEUE operation (Figure 7) reveals
that it is similar to the POP operation of Figure 4—on a DEQUEUE
the thread exits from the innermostenter(). Hence, the worst-case
running time for DEQUEUE isT (n) = O(1) time.

6.2.3 ENQUEUE

The ENQUEUE operation is a relatively complex operation be-
cause of the referencing constraints imposed by RTSJ: Objects in
an ancestor scope cannot reference objects in a descendant scope
because the descendant scope is reclaimed before the ancestor
scope. As a consequence of this and other constraints, the ele-
ments already in a queue must first be stored somewhere before a

DEQUEUE(Q)
1 if ISQ-EMPTY(Q)
2 then x← NULL
3 elsex← front
4 returnx

Figure 7. Procedure to remove an element from the front of the queue—
scoped-memory implementation.

new element can be enqueued. After the element is enqueued, all
the stored elements are put back on the queue in their correct order.
A stack is an ideal structure to store the queue elements because it
preserves their order for the queue. As illustrated in Figure 5, two
threads are needed to facilitate the ENQUEUE operation: one for
the queue and one to service the stack. The thread that services the
queue is the application thread and is referred to asT0; T1 is the
service thread for the stack. These two threads are synchronized by
a parametersync, which they use to share data between them—see
Figure 8.

ENQUEUE(Q, x)
1 while !ISQ-EMPTY(Q)
2 do sync ← DEQUEUE(Q)
3 PUSH(S,sync)
4 Sc ← new ScopedMemory(m)
5 enter(Sc, T0)
6 front ← x
7 while !IS-EMPTY(S)
8 do sync ← POP(S)
9 PUSH-Q(Q,sync)

time cost frequency
c1 n + 1
c2 n
c3 n
c4 1
c5 1
c6 1
c7 n + 1
c8 n
c9 n

Figure 8. Procedure to add an element to the rear of the queue—scoped-
memory implementation. Eachci is a constant andn = |Q|+ |S|. Initially
stackS is empty.

PUSH-Q(S, x)
1 sm ← new ScopedMemory(size)
2 enter(sm, Ta)
3 front ← x

Figure 9. Private helper method that puts an element at the front of the
queue in the same manner that an element is pushed onto a stack—scoped-
memory implementation.size ≥ |x|+ |front |.

PUSH-Q is a private method that puts a stored element back on
the queue in the way that the PUSH operation works for a stack.
The worst-case running time for this method isT (n) = O(1) time.
This is the same running time for the PUSH operation of Figure 3.

Given the procedure in Figure 8 the worst-case running time
for ENQUEUE is linear in the number of elements already in the
queue:

T (n) = (n + 1)c1 + nc2 + nc3 + c4 + c5 + c6 +

(n + 1)c7 + nc8 + nc9

= (c1 + c2 + c3 + c7 + c8 + c9)n + c1 + c4 +

c5 + c6 + c7

= cb ∗ n + ca

= O(n)
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6.3 Cumulative analysis for queue

We compute the theoretical running time for an intermixed se-
quence of ENQUEUE and DEQUEUE operations on a queue in-
stance by analyzing the worst-case running time of the sequence.
Since we suggested two implementation contexts for the queue
ADT, we compute the running time for each implementation. Sup-
posen denotes the number of operations in the sequence andm
denotes the number of ENQUEUE operations, then the number of
DEQUEUE operations is given asn−m wheren−m ≤ m ≤ n.
The worst-case running time for the heap implementation is thus
given as:

T (n) = Tenq(m) + Tdeq(n − m)

= m ∗ c1 + (n − m) ∗ c2

= nc2 + m(c1 − c2)

= O(n)

This is identical to the linked-list analysis of an intermixed se-
quence of PUSH and POP operations on a stack because the inser-
tion operation an the deletion operation each executes in constant
time.

The scoped-memory implementation is more complex for the
ENQUEUE operation. The running time for the sequence of oper-
ations in that context is also more complex and more costly. We
compute the worst-case running time as follows:

T (n) = Tenq(m,~s) + Tdeq(n − m)

= Tenq(m,~s) + (n − m) ∗ c2

~s = 〈s1, s2, . . . , sm〉 is included as input to the computation of the
running time for the ENQUEUE operations because the running
time of each invocation of the ENQUEUE operation depends on
the number of elements in the queue.si denotes the number of
elements on the queue before theith operation. Given fixedn
andm, the worst-case running time for the sequence of operations
occurs when no DEQUEUE operations precede an ENQUEUE
operation. In this case the values in~s are monotonically increasing
from 0 to m − 1, so for the computation ofT (n) given below,
si = i − 1. ca andcb are derived from the ENQUEUE analysis
above andcd is the time for the constant DEQUEUE operation.

T (n) = Tenq(m,~s) + Tdeq(n − m)

=

m∑
i=1

(ca + sicb) + Tdeq(n − m)

=

m∑
i=1

(ca + (i − 1)cb) + Tdeq(n − m)

= mca +

(
m∑

i=1

cbi

)
− mcb + Tdeq(n − m)

= mca − mcb + cb

(
m∑

i=1

i

)
+ Tdeq(n − m)

= m(ca − cb) + cb
m(m + 1)

2
+ Tdeq(n − m)

= m(ca − cb) +
m2cb

2
+

mcb

2
+ Tdeq(n − m)

=
cb

2
m2 +

2ca − cb

2
m + (n − m)cd

=
cb

2
m2 +

2ca − cb − 2cd

2
m + cdn

Sincem ≤ n it follows thatT (n) = O(n2). Thus, for a scoped-
memory queue implementation the worst-case running time for an

intermixed sequence ofn ENQUEUE and DEQUEUE operations
is T (n) = O(n2).

6.4 Discussion

Two possible implementations for the queue ADT were suggested:
a singly-linked-list implementation and an RTSJ scoped-memory
implementation. The singly-linked-list implementation yields
T (n) = O(1) worst-case execution time for each queue opera-
tion. The scoped-memory implementation yieldsT (n) = O(1)
worst-case execution time for the ISQ-EMPTY and DEQUEUE
operations, butO(n) time for the ENQUEUE operation. The rea-
son the worst-case execution time for ENQUEUE is linear instead
of constant is based on the referencing constraints imposed by
RTSJ’s scoping rules. Scopes are usually instantiated in a stack-
like fashion. Thus, to enqueue an element the scope stack must be
popped and the element in each scope must be stored on a stack
or some other data structure. A new scope to enqueue the element
must then be instantiated from the base of the scope stack and be
placed on the queue. The elements stored away for the ENQUEUE
operation must then be restored on the queue in a LIFO manner.

In addition to performing analysis for each operation, we per-
formed analysis for the problem of running a sequence ofn EN-
QUEUE and DEQUEUE operations on a queue instance. The
singly-linked-list implementation gives a worst-case running time
of O(n) and the scoped-memory implementation gives a worst-
case running time ofO(n2). Thus, the scoped-memory implemen-
tation gives a running time that is an order of magnitude larger
than the running time given by the singly-linked-list implementa-
tion. This is rather expensive for an environment that governs its
own memory and gives NHRTs higher priorities than any garbage
collector.

6.5 Improved scoped-memory implementation of queue

We presented thus far an implementation of a queue in an RTSJ
scoped-memory environment that turned out to have a worst-case
running time ofO(n2) for n consecutive ENQUEUE operations.
Here, we present a modified queue implementation that has better
worst-case time performance on the problem of running an inter-
mixed sequence ofn ENQUEUE and DEQUEUE operations on a
queue instance (see Figure 10).

ENQUEUE(Q, x)
1 nenq ← nenq + 1
2 if nenq is some power of2
3 then while !ISQ-EMPTY(Q)
4 do sync ← DEQUEUE(Q)
5 PUSH(S,sync)
6 for i = 1 to nenq

7 do Sc ← new ScopedMemory(m)
8 enter(Sc, T0)
9 front ← getOuterScope()
10 thread [next ]← front
11 front ← x
12 while !IS-EMPTY(S)
13 do sync ← POP(S)
14 PUSH-Q(Q,sync)
15 elsetemp ← thread [next ][front ]
16 thread [next ][front ]← x
17 thread [next ]← temp

Figure 10. Procedure to add an element to the rear of the queue—scoped-
memory implementation.

As with the previous implementation, we use a service stack
with its own NHRTT1 to manage the queue. We also limit each
scope to holding at most one queue element, and the ISQ-EMPTY
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and DEQUEUE operations remain the same as those presented
above. Whereas before we copied the entire queue over to the
service stack for each ENQUEUE operation, now we do so only
for the ith ENQUEUE operation wheni is a power of2. After
the queue elements are copied to the service stack, and before they
are copied back to the queue in their previous order, we create not
one buti new scopes at the rear of the queue. The new element
is enqueued in the deepest scope—the one nearest to the front of
the queue. The other scopes remain empty until they are filled on
subsequent ENQUEUE operations.

Suppose, for example, we start with an empty queue and per-
form 15 consecutive ENQUEUE operations. The queue now has
15 elements, each in its own scope. Then another ENQUEUE op-
eration is to be performed. First, the elements already in the queue
are copied over to the service stack. Then, not one but 16 nested
scopes, each capable of holding one queue element, are created.
The element being enqueued is placed in the most deeply nested
scope,i.e., the one closest to the front of the queue. Then the 15
elements on the service stack are copied back over to the queue in
their correct order. Now, the next 15 ENQUEUE operations will fill
the empty scopes without having to use the service stack. A field
nenq in the synchronized shared memory (in the scope containing
both the queue and service stack) will keep track of the number of
times ENQUEUE has been called.

line time cost freq. whennenq = 2x freq. otherwise
1 c1 1 1
2 c2 1 1
3 c3 n + 1 0
4 c4 n 0
5 c5 n 0
6 c6 nenq + 1 0
7 c7 nenq 0
8 c8 nenq 0
9 c9 nenq 0
10 c10 1 0
11 c11 1 0
12 c12 n + 1 0
13 c13 n 0
14 c14 n 0
15 c15 0 1
16 c16 0 1
17 c17 0 1

Figure 11. Statistics for procedure in Figure 10. Eachci is a constant and
n = |Q|+ |S|. Initially stackS is empty and son = |Q|.

6.5.1 Cumulative analysis for queue revisited

The worst-case running time for a single call of the ENQUEUE
operation isO(n), wheren is the number of elements already
on the queue, so the worst-case running time forn consecutive
ENQUEUE calls, starting with an empty queue, might reasonably
be expected to beO(n2). Fortunately, that turns out not to be the
case. Consider beginning with an empty queue and performing a
series ofn ENQUEUE operations with no DEQUEUEs. During the
ith ENQUEUE call,n = i − 1 (sincen is the number of elements
already on the queue) andnenq = i (after the shared-memory field
nenq is incremented as the first step of the ENQUEUE algorithm).
It can be seen from Figure 11 that theith ENQUEUE call takes
ca + cbi time if i = 2x for some integerx, where

ca = c1 + c2 − c4 − c5 + c6 + c10 + c11 − c13 − c14

cb = c3 + c4 + c5 + c6 + c7 + c8 + c9 + c12 + c13 + c14

andcc time otherwise, where

cc = c1 + c2 + c15 + c16 + c17

Assumingn = 2x for some integerx (which is a worst case, since
the last ENQUEUE will be a linear-time and not a constant-time
operation), the total running time for alln ENQUEUEs is given as

T (n) =

x∑
j=0

(ca + cb2
x) + (2x − x − 1)cc

= (x + 1)ca +

(
x∑

j=0

2x

)
cb + (2x − x − 1)cc

= (x + 1)ca + (2x+1 − 1)cb + (2x − x − 1)cc

= (2cb + cc)2
x + (ca − cc)x + ca − cb − cc

= (2cb + cc)n + (ca − cc) log2 n + ca − cb

−cc

= O(n)

Thus, the improved ENQUEUE operation has a worst-case run-
ning time ofO(n) on the sequence of operations. However, be-
cause it overallocates when resizing, ENQUEUE relies at some
point on having twice the number of cells allocated as are actually
in use. Interestingly, a space-time trade-off of this nature is also
endemic to the real-time collectors [4]. Still, the memory required
is bounded and proportional to the maximum number of elements
in the queue at any given time.

7. List analysis
In this section and Section 8 we use the transformation described
in Section 3 to migrate functional programming implementations
of data structures and their time-complexity analyses to RTSJ. We
begin with thelist ADT

Thelist ADT is an ADT that formalizes the notion of an ordered
collection of entities or items. The fundamental operations of list
are:

1. ISLIST-EMPTY(L) - an operation that returns the binary value
TRUE if list L is empty,FALSE otherwise.

2. SIZE(L) - an operation that returns the number of elements in
list L.

3. CREATE(L) - an operation that creates an empty listL.

4. INSERT(L, x) - an operation that inserts an item at the head
(front) of list L.

5. HEAD(L) - an operation that returns the item at the head of list
L.

6. DELETE-ITEM(L) - an operation that removes the item lo-
cated at head of listL and returns a list containing one fewer
item. If L is empty, an error condition is reported.

7. LOOKUP(L, i) - an operation that returns the item located at
index i of list L. If L contains fewer thani items, an error
condition is reported.

8. UPDATE(L, i, x) - an operation that replaces the item at index
i in list L with itemx. If L contains fewer thani items, an error
condition is reported.

7.1 Typical implementation of list

In the heap, the singly-linked-list or the doubly-linked-list data
structure can be used to implement the list ADT. In either case the
ISLIST-EMPTY, SIZE, CREATE, HEAD, and DELETE-ITEM op-
erations each executes inO(1) time. The LOOKUP and UPDATE
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operations each requiresO(n) time since the list has to be searched
to find the requested index.

7.2 Scoped-memory implementation of list

We do not present a particular scoped-memory implementation as
we did in Sections 5 and 6. Instead, we migrate to this section
cost analysis for list from the functional programming language
community [15, 16]. In his Ph.D. dissertation, Okasaki [16] im-
plemented the list ADT in Standard ML, a functional program-
ming language. The declaration of each operation is similar to
those given above. He also analyzed the running time of each op-
eration. Using his analysis and the results in Section 3 we give
the following time complexity for each list operation when imple-
mented with RTSJ scoped-memory areas. The ISLIST-EMPTY,
SIZE, CREATE, HEAD, and DELETE-ITEM operations each ex-
ecutes inO(1) time while the LOOKUP and UPDATE operations
requiresO(log n) time each.

7.3 Cumulative analysis for list

Suppose there exists a listL with n items. We consider com-
puting the running time of executing an intermixed sequence of
m LOOKUP and UPDATE operations (the most expensive oper-
ations) on listL. In a heap implementation, the running time for
the sequence of operations isO(mn). In a scoped-memory imple-
mentation, the running time isO(m log n). While it appears that a
scoped-memory implementation is more efficient than a heap im-
plementation, the scoped-memory implementation can leak an un-
bounded amount of memory if some method of explicitly reclaim-
ing scopes is not utilized. In Section 3 we noted three approaches
that can be used to reclaim scopes.

8. Heap analysis
The heap or priority queue is the second ADT with which we
use the transformation outlined in Section 3. This ADT, at a
minimum, allows the following operations: INSERT, which inserts
an element in the heap; and DELETE-MIN, which finds, returns,
and deletes the minimum element from the heap. The heap is
generally implemented as a tree-based data structure that satisfies
the structure propertyand theheap order property. The structure
property says that a heap is implemented as a binary tree that
is completely filled, with the possible exception being the leaves
level, which is filled from left to right [19]. The heap order property
requires that data in the heap be an ordered set. Since the minimum
element needs to be found quickly, the heap order property requires
that the smallest element be at the root of the heap. If it is required
that every subtree be a heap, then any node in the heap should be
smaller than its descendants. This implementation of the heap ADT
is called the binary heap.

Another implementation of the heap ADT is the binomial heap.
A binomial heap is similar to a binary heap except that the operation
that merges two heaps runs rather quickly. Since the operations for
both implementations of the heap are the same, we consider the
binomial heap in our analysis. Thus, we define the fundamental
operations for heap as follows:

1. CREATE(H) - an operation that creates an empty heapH.

2. ISHEAP-EMPTY(H) - an operation that returns the binary
valueTRUE if heapH is empty,FALSE otherwise.

3. INSERT(H, x) - an operation that inserts itemx in heapH.

4. FIND-MIN(H ) - an operation that finds and returns the mini-
mum item in heapH.

5. DELETE-MIN(H) - an operation that removes the minimum
item in heapH and returns a new heap with one fewer item. If
H is empty, an error condition is reported.

6. MERGE(H1, H2) - an operation that merges heapH1 with
heapH2 to form a new heap containing as many items as the
sum of the number of items inH1 andH2.

8.1 Typical implementation of heap

In the heap (not the heap data structure) where dynamic memory
management occurs, several options are available for implementing
the heap ADT. An array can be used to store the heap; a binary
tree can be used to implement the heap; a binomial tree can also
be used to implement the heap. We consider the binomial tree
implementation, more specifically the binomial heap data structure,
in our analysis for reasons given above. Consequently, the cost
associated with each operation is given as follows. The CREATE
and ISHEAP-EMPTY operations each takesO(1) time to execute.
The other operations each requiresO(log n) time. This is not
surprising since the height of the tree used to store the heap is
O(log n), wheren is the number of nodes (items) in the tree.

8.2 Scoped-memory implementation of heap

As we did for the list ADT, we migrate to this section cost analysis
of the running times of heap operations from the functional pro-
gramming language community. In particular, we migrate analyses
from Okasaki [16]. Okasaki used a binomial heap implementation
for the heap ADT, which he developed in Standard ML. He ana-
lyzed the running time of each operation and obtained a complex-
ity of O(log n) for each operation, except CREATE and ISHEAP-
EMPTY, which each executes inO(1) time. Adopting Okasaki’s
results, we conclude that for an RTSJ scoped-memory implemen-
tation of the heap ADT, the operations CREATE and ISHEAP-
EMPTY execute inO(1) time. Every other operation, namely
INSERT, FIND-MIN, DELETE-MIN, and MERGE, each requites
O(log n) time.

8.3 Cumulative analysis for heap

Here we consider executing an intermixed sequence ofm INSERT,
FIND-MIN, DELETE-MIN, and MERGE operations. Interest-
ingly, these operations have the same running time for both a heap
implementation and a scoped-memory implementation. Since each
operation has a running time ofO(log n) and there arem opera-
tions in the sequence, the running time for the sequence of opera-
tions isO(m log n).

Although the results are the same for both implementations, the
heap implementation is simple and exists in most data structure
texts. Further, scoped-memory implementation of heap is not com-
monplace. Theorem 3.2 allows us to migrate a functional program-
ming language implementation of heap to RTSJ; however, such im-
plementation can consume an unnecessary amount of memory if
extreme care is not taken in reclaiming scopes. Section 3 offers a
few suggestions.

9. Conclusions
There are many implementations of RTSJ including TimeSys,
JRate, and an implementation from Sun Microsystems. In the
real-time and academic communities many are experimenting with
RTSJ’s scoped-memory areas and NHRTs. Until now, there has not
been objective time-complexity analysis of scoped-memory areas
and NHRTs.

In this paper we presented asymptotic time-complexity analysis
for RTSJ scoped-memory areas and NHRTs. One approach was to
suggest implementations in RTSJ for abstract data types like stack
and queue and to determine asymptotic bounds for their execution.
The results allow us to compare scoped memory with other memory
models and to reason more thoroughly about the differences among
those models.
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One of our assumptions for the above approach was to consider
one element per scope. We do not recommend this restriction
in practice; however, the analysis holds if multiple elements are
allowed per scope. Consider, for example,4k elements per scope.
If 4k elements are enqueued on a queue and a(4k + 1)th element
is to be enqueued (with no intervening dequeue operation), a new
scope would have to be instantiated to accommodate that element.
That enqueue operation suffers the cost discussed in Section 6.5.1.

An additional approach to providing asymptotic time-complexity
analysis for RTSJ scoped-memory areas and NHRTs is to migrate
extant functional programming language implementations of im-
portant data structures to RTSJ. This migrations is a direct con-
sequence of our proof that programs written in a pure functional
programming language can be executed in a provably safe manner
in RTSJ when scoped-memory areas and NHRTs are used. This
migration also allows us to migrate time-complexity analysis for
data structures implemented in a functional programming language
to RTSJ. We used that approach to perform time-complexity anal-
ysis for RTSJ scoped-memory areas and NHRTs using the list and
heap abstract data types. We discovered that the time-complexity
results for RTSJ are comparable to the results for heap implemen-
tations. Moreover, using RTSJ forces the developer to think more
carefully about memory management since RTSJ scopes can leak
an unbounded amount of memory. Ours is the first work to point
this out.
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