
Lab 33 Due Date: See Blackboard

Source File: ~/2336/33/lab33.cpp

Input: under control of main function
Output: under control of main function
Value: 3

The Shell sort, named after its inventor Donald Shell, provides a simple and efficient sorting algorithm.
The sort begins by subdividing an n-element vector v into k sublists, which have members

v[0], v[k + 0], v[2k + 0], . . .
v[1], v[k + 1], v[2k + 1], . . .
...
v[k − 1], v[k + (k − 1)], v[2k + (k − 1)], . . .

A sublist starts with a first element v[i] in the range from v[0] through v[k− 1] and includes every successive

kth element. For instance, with k = 4 and the vector

7 5 8 6 2 4 9 1 3 0

the first sublist is

7 2 3

Sorting the sublist using the insertion sort yields

2 3 7

After placing the elements from the sorted sublist back in the original vector, we have

2 5 8 6 3 4 9 1 7 0

The second sublist from the above vector is

5 4 0

Sorting the sublist using the insertion sort yields

0 4 5

After placing the elements from the sorted sublist back in the original vector, we have

2 0 8 6 3 4 9 1 7 5

CS 2336 — Data Structures and Algorithms Page 1



Lab 33 Due Date: See Blackboard

The third sublist from the above vector is

8 9

Sorting the sublist using the insertion sort yields

8 9

After placing the elements from the sorted sublist back in the original vector, we have

2 0 8 6 3 4 9 1 7 5

The fourth sublist from the above vector is

6 1

Sorting the sublist using the insertion sort yields

1 6

After placing the elements from the sorted sublist back in the original vector, we have

2 0 8 1 3 4 9 6 7 5

Repeat the process with successively smaller values of k, and continue through k = 1. When k =
1, the algorithm corresponds to the ordinary insertion sort that assures the vector is in order. The
values of k the algorithm uses are called the increment sequence. It can be shown that a very effec-
tive increment sequence is to choose as the starting value of k the largest number from the sequence
1, 4, 13, 40, 121, 364, 1093, 4193, 16577, . . . that is less than or equal to n/9. After each iteration, replace
k with k/3 so that the increments move backward in the sequence from the starting value of k through
k = 1. The data swapping occurs in noncontiguous segments of the vector, which moves an element a
greater distance toward its final location than a swap of adjacent entries in the ordinary insertion sort. It
can be shown that the Shell sort does less than O(n3/2) comparisons for this increment sequence.

Write a function template to implement the Shell sort. You may use the following code to find the
starting value for k.

1 for (k = 1; k <= n / 9; k = 3 * k + 1)
2 ; // null statement

A sample main function for testing your implementation is shown in Figure 1 and a sample execution sequence
is shown in Figure 2. You will need to add a target of lab33main to the definition of targets1srcfile in
your Makefile.

Page 2 CS 2336 — Data Structures and Algorithms



Lab 33 Due Date: See Blackboard

1 #include <cstdlib>
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 #include <chrono>
6 #include <d_random.h>
7

8 using namespace std;
9

10 template <typename T>
11 void insertionSort(vector<T>& v)
12 {
13 T *i, *j, *n = v.data() + v.size(), *start = v.data();
14 T target;
15

16 for (i = v.data() + 1; i < n; i++)
17 {
18 j = i;
19 target = *i;
20 while (j > start && target < *(j-1))
21 {
22 // shift elements up list to make room for insertion
23 *j = *(j-1);
24 j--;
25 }
26 // the location is found; insert target
27 *j = target;
28 }
29 }
30

31 template <typename T>
32 void shellSort(vector<T>& v);
33

34 #include <lab33.cpp>
35

36 const int N = 25000;
37 enum TEST_TYPE {RANDOM, ASCENDING, DESCENDING};
38

39 int main()
40 {
41 vector<int> v, w, x;
42 randomNumber rnd;
43 TEST_TYPE testType;
44 int i;
45

Figure 1. /usr/local/2336/src/lab33main.C (Part 1 of 2)

CS 2336 — Data Structures and Algorithms Page 3



Lab 33 Due Date: See Blackboard

46 for (testType = RANDOM;
47 testType <= DESCENDING;
48 testType = static_cast<TEST_TYPE>(testType + 1))
49 {
50 if (!v.empty())
51 v.clear();
52 switch (testType)
53 {
54 case RANDOM:
55 for (i = 0; i < N; ++i)
56 v.push_back(rnd.random(1000000));
57 cout << "Random Data:" << endl;
58 break;
59 case ASCENDING:
60 for (i = 0; i < N; ++i)
61 v.push_back(i);
62 cout << "Ascending Data:" << endl;
63 break;
64 case DESCENDING:
65 for (i = 0; i < N; ++i)
66 v.push_back(N - i);
67 cout << "Descending Data:" << endl;
68 break;
69 }
70 x = v;
71 sort(x.begin(), x.end());
72

73 w = v;
74 auto start = chrono::system_clock::now();
75 shellSort(w);
76 auto stop = chrono::system_clock::now();
77 cout << "Shell Sort: "
78 << chrono::duration_cast<chrono::milliseconds>(stop-start).count()
79 << "ms" << endl;
80 if (x != w)
81 cout << "Sort didn’t work correctly" << endl;
82 cout << endl;
83 }
84 return EXIT_SUCCESS;
85 }

Figure 1. /usr/local/2336/src/lab33main.C (Part 2 of 2)

Page 4 CS 2336 — Data Structures and Algorithms



Lab 33 Due Date: See Blackboard

1 newuser@csunix ~> cd 2336
2 newuser@csunix ~/2336> ./getlab.ksh 33
3 * Checking to see if a folder exists for Lab 33. . .No
4 * Creating a folder for Lab 33
5 * Checking to see if Lab 33 has sample input and output files. . .No
6 * Checking to see if /usr/local/2336/src/lab33main.C exists. . .Yes
7 * Copying file /usr/local/2336/src/lab33main.C to folder ./33
8 * Checking to see if /usr/local/2336/include/lab33.h exists. . .No
9 * Copying file /usr/local/2336/src/Makefile to folder ./33

10 * Adding a target of lab33main to targets1srcfile
11 * Touching file ./33/lab33.cpp
12 * Edit file ./33/lab33.cpp in Notepad++
13 newuser@csunix ~/2336> cd 33
14 newuser@csunix ~/2336/33> ls
15 Makefile lab33.cpp lab33main.C
16 newuser@csunix ~/2336/33> make lab33main
17 g++ -g -Wall -std=c++11 -c lab33main.C -I/usr/local/2336/include -I.
18 g++ -o lab33main lab33main.o -L/usr/local/2336/lib -lm -lbits
19 newuser@csunix ~/2336/33> ./lab33main
20 Random Data:
21 Shell Sort: 12ms
22

23 Ascending Data:
24 Shell Sort: 6ms
25

26 Descending Data:
27 Shell Sort: 7ms
28

29 newuser@csunix ~/2336/33>

Figure 2. Commands to Compile, Link, & Run Lab 33

CS 2336 — Data Structures and Algorithms Page 5


