Lab 33 Due Date: See Blackboard

Source File: ~/2336/33/1ab33.cpp

Input: under control of main function
Output: under control of main function
Value: 3

The Shell sort, named after its inventor Donald Shell, provides a simple and efficient sorting algorithm.
The sort begins by subdividing an n-element vector v into k sublists, which have members

I, v[k + 0], v[2k + 0],
v[1], v[k + 1], v[2k + 1],

o[k —1], v[k+(k—=1)], o[2k+ (k1)

A sublist starts with a first element v[i] in the range from v[0] through v[k — 1] and includes every successive

Eth element. For instance, with £ = 4 and the vector

the first sublist is

Sorting the sublist using the insertion sort yields

After placing the elements from the sorted sublist back in the original vector, we have

The second sublist from the above vector is

Sorting the sublist using the insertion sort yields

After placing the elements from the sorted sublist back in the original vector, we have

CS 2336 — Data Structures and Algorithms Page 1



Lab 33 Due Date: See Blackboard

The third sublist from the above vector is

Sorting the sublist using the insertion sort yields

After placing the elements from the sorted sublist back in the original vector, we have

The fourth sublist from the above vector is

Sorting the sublist using the insertion sort yields

After placing the elements from the sorted sublist back in the original vector, we have

Repeat the process with successively smaller values of k, and continue through £ = 1. When k& =
1, the algorithm corresponds to the ordinary insertion sort that assures the vector is in order. The
values of k the algorithm uses are called the increment sequence. It can be shown that a very effec-
tive increment sequence is to choose as the starting value of k the largest number from the sequence
1,4,13,40,121, 364, 1093,4193,16577, ... that is less than or equal to n/9. After each iteration, replace
k with k/3 so that the increments move backward in the sequence from the starting value of k through
k = 1. The data swapping occurs in noncontiguous segments of the vector, which moves an element a
greater distance toward its final location than a swap of adjacent entries in the ordinary insertion sort. It
can be shown that the Shell sort does less than O(n3/?) comparisons for this increment sequence.

Write a function template to implement the Shell sort. You may use the following code to find the

starting value for k.
1 for (k =1; k<=n/9; k=3x*xk+ 1)
2 ; // null statement

A sample main function for testing your implementation is shown in Figure 1 and a sample execution sequence
is shown in Figure 2. You will need to add a target of 1ab33main to the definition of targetsisrcfile in
your Makefile.

Page 2 CS 2336 — Data Structures and Algorithms



Lab 33

Due Date: See Blackboard

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

#include
#include
#include
#include
#include
#include

<cstdlib>
<iostream>
<vector>
<algorithm>
<chrono>
<d_random.h>

using namespace std;

template

<typename T>

void insertionSort(vector<T>& v)

{

T *i, *j, *n = v.data() + v.size(), *start = v.dataQ);
T target;

for (i
{
J

= v.data() + 1; i < n; i++)

=i

target = *i;
while (j > start && target < *(j-1))

{
//

*J

shift elements up list to make room for insertion
= *(j-1);

i

}

// the location is found; insert target

*j =

template

target;

<typename T>

void shellSort(vector<T>& v);

#include

<1lab33.cpp>

const int N = 25000;
enum TEST_TYPE {RANDOM, ASCENDING, DESCENDING};

int main()

{

vector<int> v, w, X;
randomNumber rnd;
TEST_TYPE testType;

int i;

Figure 1. /usr/local/2336/src/lab33main.C (Part 1 of 2)

CS 2336 — Data Structures and Algorithms

Page 3



Lab 33

Due Date: See Blackboard

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

}

for (testType = RANDOM;
testType <= DESCENDING;
testType = static_cast<TEST_TYPE>(testType + 1))
{
if (!v.empty())
v.clear();
switch (testType)

{
case RANDOM:
for (1 = 0; i < N; ++i)
v.push_back(rnd.random(1000000)) ;
cout << "Random Data:" << endl;
break;
case ASCENDING:
for (1 = 0; i < N; ++i)
v.push_back(i);
cout << "Ascending Data:" << endl;
break;
case DESCENDING:
for (1 = 0; i < N; ++i)
v.push_back(N - i);
cout << "Descending Data:" << endl;
break;
b
X = V;

sort(x.begin(), x.end());

W= v
auto start = chrono::system_clock: :now();
shellSort (w);

auto stop = chrono::system_clock: :now();
cout << "Shell Sort: "

<< chromno: :duration_cast<chrono::milliseconds>(stop-start).count()

<< "ms" << endl;
if (x !'= w)
cout << "Sort didn’t work correctly" << endl;
cout << endl;
}
return EXIT_SUCCESS;

Figure 1. /usr/local/2336/src/lab33main.C (Part 2 of 2)

Page 4

CS 2336 — Data Structures and Algorithms



Lab 33 Due Date: See Blackboard

1 newuser@csunix "> cd 2336
2 newuser@csunix ~/2336> ./getlab.ksh 33

3 * Checking to see if a folder exists for Lab 33. . .No

4 * Creating a folder for Lab 33

5 * Checking to see if Lab 33 has sample input and output files. . .No
6 * Checking to see if /usr/local/2336/src/lab33main.C exists. . .Yes
7 * Copying file /usr/local/2336/src/lab33main.C to folder ./33

8 * Checking to see if /usr/local/2336/include/lab33.h exists. . .No

0 * Copying file /usr/local/2336/src/Makefile to folder ./33

10 * Adding a target of lab33main to targetslsrcfile

1 * Touching file ./33/1ab33.cpp

12 * Edit file ./33/1ab33.cpp in Notepad++

13 newuser@csunix ~/2336> cd 33

14 newuser@csunix ~/2336/33> 1s

15 Makefile 1ab33.cpp lab33main.C

16 newuser@csunix ~/2336/33> make lab33main

17 g++ —-g -Wall -std=c++11 -c lab33main.C -I/usr/local/2336/include -I.
18 g++ -0 lab33main lab33main.o -L/usr/local/2336/1lib -1m -1lbits
19 newuser@csunix ~/2336/33> ./lab33main

20 Random Data:

21 Shell Sort: 12ms

22

23 Ascending Data:

24 Shell Sort: 6ms

26 Descending Data:
27 Shell Sort: 7ms

28

29 newuser@csunix ~/2336/33>

Figure 2. Commands to Compile, Link, & Run Lab 33

CS 2336 — Data Structures and Algorithms Page 5



