
Lab 32 Due Date: See Blackboard

Source File: ~/2336/32/lab32.cpp

Input: under control of main function
Output: under control of main function
Value: 1

The exchange sort is another basic sort algorithm that repeatedly scans a vector and swaps elements
until the list is placed in ascending order. The algorithm exchanges a pair of elements when a smaller element
is out of order. An illustration of the three-pass process for the four-element list 8, 3, 6, 2 is shown below:

Pass 0: Consider the full list 8, 3, 6, 2. The entry at index 0 is compared with each other entry in the
vector at index 1, 2, and 3. For each comparison, if the larger element is at index 0, the two entries
are exchanged. After all the comparisons, the smallest element is stored at index 0.

Initial List Action Resulting List

8 3 6 2 Exchange 3 8 6 2

3 8 6 2 No Exchange 3 8 6 2

3 8 6 2 Exchange 2 8 6 3

Pass 1: Consider the sublist 8, 6, 3. With the smallest element already located at index 0, only entries in
the vector from index 1 to the end are considered. The entry at index 1 is compared with the other
entries at index 2 and 3. For each comparison, if the larger element is at index 1, the two entries
are exchanged. After all the comparisons, the smallest element in the new list is stored at index 1.

Initial List Action Resulting List

2 8 6 3 Exchange 2 6 8 3

2 6 8 3 Exchange 2 3 8 6

Pass 2: Consider the sublist 8, 6. With the two smallest elements already located at index 0 and 1, only
entries in the list from index 2 to the end are considered. The entry at index 2 is compared with
the only other element in the vector, at index 3. After the comparison, the smallest element in the
new list is stored at index 2. The resulting vector is ordered.

Initial List Action Resulting List

2 3 8 6 Exchange 2 3 6 8

CS 2336 — Data Structures and Algorithms Page 1



Lab 32 Due Date: See Blackboard

1 #include <cstdlib>
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 #include <chrono>
6 #include <d_random.h>
7

8 using namespace std;
9

10 template <typename T>
11 void exchangeSort(vector<T>& v);
12

13 #include <lab32.cpp>
14

15 const int N = 25000;
16 enum TEST_TYPE {RANDOM, ASCENDING, DESCENDING};
17

18 int main()
19 {
20 vector<int> v, w, x;
21 randomNumber rnd;
22 TEST_TYPE testType;
23 int i;
24

25 for (testType = RANDOM;
26 testType <= DESCENDING;
27 testType = static_cast<TEST_TYPE>(testType + 1))
28 {
29 if (!v.empty())
30 v.clear();
31 switch (testType)
32 {
33 case RANDOM:
34 for (i = 0; i < N; ++i)
35 v.push_back(rnd.random(1000000));
36 cout << "Random Data:" << endl;
37 break;

Figure 1. /usr/local/2336/src/lab32main.C (Part 1 of 2)

Write a function template to implement the exchange sort by using nested for loops. The outer loop
has iterations for pass = 0 through pass = v.size()− 2. The inner loop compares v[pass] with each of the
elements at

v[pass+ 1], v[pass+ 2], . . . , v[v.size()− 1]

A sample main function for testing your implementation is shown in Figure 1 and a sample execution sequence
is shown in Figure 2. You will need to add a target of lab32main to the definition of targets1srcfile in
your Makefile.

Page 2 CS 2336 — Data Structures and Algorithms



Lab 32 Due Date: See Blackboard

38 case ASCENDING:
39 for (i = 0; i < N; ++i)
40 v.push_back(i);
41 cout << "Ascending Data:" << endl;
42 break;
43 case DESCENDING:
44 for (i = 0; i < N; ++i)
45 v.push_back(N - i);
46 cout << "Descending Data:" << endl;
47 break;
48 }
49 x = v;
50 sort(x.begin(), x.end());
51

52 w = v;
53 auto start = chrono::system_clock::now();
54 exchangeSort(w);
55 auto stop = chrono::system_clock::now();
56 cout << "Exchange Sort: "
57 << chrono::duration_cast<chrono::milliseconds>(stop-start).count()
58 << "ms" << endl;
59 if (x != w)
60 cout << "Sort didn’t work correctly" << endl;
61 cout << endl;
62 }
63 return EXIT_SUCCESS;
64 }

Figure 1. /usr/local/2336/src/lab32main.C (Part 2 of 2)

CS 2336 — Data Structures and Algorithms Page 3



Lab 32 Due Date: See Blackboard

1 newuser@csunix ~> cd 2336
2 newuser@csunix ~/2336> ./getlab.ksh 32
3 * Checking to see if a folder exists for Lab 32. . .No
4 * Creating a folder for Lab 32
5 * Checking to see if Lab 32 has sample input and output files. . .No
6 * Checking to see if /usr/local/2336/src/lab32main.C exists. . .Yes
7 * Copying file /usr/local/2336/src/lab32main.C to folder ./32
8 * Checking to see if /usr/local/2336/include/lab32.h exists. . .No
9 * Copying file /usr/local/2336/src/Makefile to folder ./32

10 * Adding a target of lab32main to targets1srcfile
11 * Touching file ./32/lab32.cpp
12 * Edit file ./32/lab32.cpp in Notepad++
13 newuser@csunix ~/2336> cd 32
14 newuser@csunix ~/2336/32> ls
15 Makefile lab32.cpp lab32main.C
16 newuser@csunix ~/2336/32> make lab32main
17 g++ -g -Wall -std=c++11 -c lab32main.C -I/usr/local/2336/include -I.
18 g++ -o lab32main lab32main.o -L/usr/local/2336/lib -lm -lbits
19 newuser@csunix ~/2336/32> ./lab32main
20 Random Data:
21 Exchange Sort: 3258ms
22

23 Ascending Data:
24 Exchange Sort: 909ms
25

26 Descending Data:
27 Exchange Sort: 3472ms
28

29 newuser@csunix ~/2336/32>

Figure 2. Commands to Compile, Link, & Run Lab 32

Page 4 CS 2336 — Data Structures and Algorithms


