
Lab 30 Due Date: See Blackboard

Source File: ~/2336/30/lab30.(C|CPP|cpp|c++|cc|cxx|cp)

Input: Under control of main function
Output: Under control of main function
Value: 3

A prime number is an integer greater than 1 whose only positive divisors are 1 and the integer itself.
The Greek mathematician Eratosthenes developed an algorithm, known as the Sieve of Eratosthenes, for
finding all prime numbers less than or equal to a given number n—that is, all primes in the range 2 through
n. Consider the list of numbers from 2 through n. Two is the first prime number, but the multiples of 2
(4, 6, 8, . . .) are not, and so they are crossed out in the list. The first number after 2 that was not crossed
out is 3, the next prime. We then cross out all higher multiples of 3 (6, 9, 12, . . .) from the list. The next
number not crossed out is 5, the next prime, and so we cross out all higher multiples of 5 (10, 15, 20, . . .).
We repeat this procedure until we reach the first number in the list that has not been crossed out and whose
square is greater than n. All the numbers that remain in the list are the primes from 2 through n. Write a
program that uses this sieve method to find all the prime numbers from 2 through n.

Use an IntegerSet (think of Lab 04) to represent the numbers 0 through n. The interface for the
IntegerSet class has been updated and is shown in Figure 1. Some differences of particular note: the
bitVector is kept as a vector, the insert member function has been renamed set, and the delete member
function has been renamed reset.

1 #ifndef INTEGER_SET
2 #define INTEGER_SET
3

4 #include <iostream>
5 #include <vector>
6

7 using namespace std;
8

9 class IntegerSet
10 {
11 // overloaded output operator for printing IntegerSet set to
12 // output stream out
13 friend ostream& operator<<(ostream& out, const IntegerSet& set);
14 public:
15 IntegerSet(uint n = 40); // default constructor; set consists
16 // 0..(n-1); set N to n; make set
17 // empty
18 bool isMember(uint e) const; // returns true if e is a member of
19 // the set and false otherwise
20 IntegerSet& set(uint e); // if e is valid and not a member of
21 // the set, insert e into set
22 IntegerSet& reset(uint e); // if e is valid and a member of
23 // the set, delete e from set
24 uint size() const; // returns N, the # of possible
25 // integers in set
26 private:
27 uint N; // # of integers in set: 0..(N-1)
28 vector<uint> bitVector; // bit vector
29 bool isValid(uint e) const; // 0 <= e < N

Figure 1. /usr/local/2336/include/IntegerSet.h (Part 1 of 2)

CS 2336 — Data Structures and Algorithms Page 1

Lab 30 Due Date: See Blackboard

30 uint word(uint n) const; // Determine index within
31 // bitVector where n is located
32 uint bit(uint n) const; // Determine position within
33 // bitVector[word(n)]
34 // for element n
35 };
36

37 #endif

Figure 1. /usr/local/2336/include/IntegerSet.h (Part 2 of 2)

Your task is to write two functions, one that implements the Sieve of Eratosthenes and another that
implements the overloaded output operator for the IntegerSet class. A sample main function for testing
your implementation is shown in Figure 2, and a sample execution sequence is shown in Figure 3. To use the
Makefile as distributed in class, add a target of lab30 to targets2srcfileswithlibrary. The overloaded
output operator function should write all of the prime numbers that remain from the sieve process. The
output should be written such that one prime number is written per line.

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <chrono>
5 #include <IntegerSet.h>
6

7 using namespace std;
8

9 void sieveOfEratosthenes(IntegerSet& prime);
10

11 int main()
12 {
13 int n;
14

15 cin >> n;
16

17 // Create an empty Integerset that can represent the range 0,1,...,n
18 IntegerSet prime(n+1);
19

20 for (uint i = 2; i < prime.size(); i++)
21 prime.set(i);
22

23 auto start = chrono::system_clock::now();
24 sieveOfEratosthenes(prime);
25 cout << prime;
26 auto stop = chrono::system_clock::now();
27 cerr << chrono::duration_cast<chrono::milliseconds>(stop-start).count()
28 << "ms" << endl;
29

30 return EXIT_SUCCESS;
31 }

Figure 2. /usr/local/2336/src/lab30main.C

Page 2 CS 2336 — Data Structures and Algorithms

Lab 30 Due Date: See Blackboard

1 newuser@csunix ~> cd 2336
2 newuser@csunix ~/2336> ./getlab.ksh 30
3 * Checking to see if a folder exists for Lab 30. . .No
4 * Creating a folder for Lab 30
5 * Checking to see if Lab 30 has sample input and output files. . .Yes
6 * Copying input and output files for Lab 30
7 from folder /usr/local/2336/data/30 to folder ./30
8 * Checking to see if /usr/local/2336/src/lab30main.C exists. . .Yes
9 * Copying file /usr/local/2336/src/lab30main.C to folder ./30

10 * Checking to see if /usr/local/2336/include/lab30.h exists. . .No
11 * Copying file /usr/local/2336/src/Makefile to folder ./30
12 * Adding a target of lab30 to targets2srcfileswithlibrary
13 * Touching file ./30/lab30.cpp
14 * Edit file ./30/lab30.cpp in Notepad++
15 newuser@csunix ~/2336> cd 30
16 newuser@csunix ~/2336/30> ls
17 1000.out 100000.out 10000000.out 33.out Makefile lab30main.C
18 10000.out 1000000.out 100000000.out 97.out lab30.cpp
19 newuser@csunix ~/2336/30> make lab30
20 g++ -g -Wall -std=c++11 -c lab30main.C -I/usr/local/2336/include -I.
21 g++ -g -Wall -std=c++11 -c lab30.cpp -I/usr/local/2336/include -I.
22 g++ -o lab30 lab30main.o lab30.o -L/usr/local/2336/lib \
23 -Wl,-whole-archive -llab30 -Wl,-no-whole-archive -lm -lbits
24 newuser@csunix ~/2336/30> echo 33 | ./lab30
25 2
26 3
27 5
28 7
29 11
30 13
31 17
32 19
33 23
34 29
35 31
36 0ms
37 newuser@csunix ~/2336/30> echo 33 | ./lab30 > my.out
38 0ms
39 newuser@csunix ~/2336/30> diff 33.out my.out
40 newuser@csunix ~/2336/30> echo 97 | ./lab30 > my.out
41 0ms
42 newuser@csunix ~/2336/30> diff 97.out my.out
43 newuser@csunix ~/2336/30> echo 1000 | ./lab30 > my.out
44 0ms
45 newuser@csunix ~/2336/30> diff 1000.out my.out
46 newuser@csunix ~/2336/30> echo 10000 | ./lab30 > my.out
47 1ms
48 newuser@csunix ~/2336/30> diff 10000.out my.out

Figure 3. Commands to Compile, Link, & Run Lab 30 (Part 1 of 2)

CS 2336 — Data Structures and Algorithms Page 3

Lab 30 Due Date: See Blackboard

49 newuser@csunix ~/2336/30> echo 100000 | ./lab30 > my.out
50 10ms
51 newuser@csunix ~/2336/30> diff 100000.out my.out
52 newuser@csunix ~/2336/30> echo 1000000 | ./lab30 > my.out
53 106ms
54 newuser@csunix ~/2336/30> diff 1000000.out my.out
55 newuser@csunix ~/2336/30> echo 10000000 | ./lab30 > my.out
56 1110ms
57 newuser@csunix ~/2336/30> diff 10000000.out my.out
58 newuser@csunix ~/2336/30> echo 100000000 | ./lab30 > my.out
59 11357ms
60 newuser@csunix ~/2336/30> diff 100000000.out my.out
61 newuser@csunix ~/2336/30>

Figure 3. Commands to Compile, Link, & Run Lab 30 (Part 2 of 2)

Page 4 CS 2336 — Data Structures and Algorithms

