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Abstract 

 
 Reversi is a two-player, zero-sum, strategy board game whose complexity lies between 
that of checkers and chess. Our research seeks to create Reversi-playing agents by using a 
genetic algorithm to evolve weights of a neural network. Agents rely on their neural network to 
make their decisions for moves of a game. In this paper we compare different styles of evolution 
and various settings for the neural network.  
 

***** 
 

Introduction 
 

Reversi Introduction 
 The game Reversi, also commonly known as Othello, is a two-player, zero-sum game. It 
is played on an 8×8 board with 64 identical game pieces. The pieces are double-sided with a 
white side and black side. The game begins with the center four positions filled with white and 
black tiles in a diagonal fashion. The black player moves first. New game pieces may only be 
placed on an empty space.  

A newly placed game piece will flip enemy tiles if there is an unbroken sequence of 
enemy tiles between the newly placed piece and an existing friendly piece. Tiles may be flipped 
in any of eight directions; up, down, left, right and diagonals. Tiles flip in multiple directions if 
there are unbroken chains in multiple directions. A player may not pick and choose which 
directions or which tiles to flip. At any point in the game, a move is only valid if it flips enemy 
tiles. This means that turns may be passed back to the opposing player if no moves are available. 
However, voluntary passing of turns is not allowed.  

The game ends when either the board is full or both players have no more legal moves to 
make. The final score is calculated by counting the number of tiles controlled for each player. 
The player with the most tiles wins the game. A tie results if the game ends with both players 
controlling the same number of game pieces. 
 
Neural Networks 
 Artificial Neural Networks (ANNs) are mathematical representations of the human brain. 
They consist of neurons and weights. Each neuron takes real-valued inputs from the previous 
layer and multiplies these inputs by given weights. It then sums those products and adds a bias 
weight. Next, the neuron applies an activation function to the final sum. If this calculation results 
from a hidden neuron, it will be passed to the next layer as a new input. If the output neuron 
performed the calculation, the result will be the final value calculated from the neural network. 



This structure is capable of approximating nonlinear, multivariate functions, making it useful for 
a variety of problems. 
 
Genetic Algorithm 
 A genetic algorithm is a computational representation of the evolution that occurs in 
nature. An initial population will be generated using a set of guidelines. Organisms are 
represented by collections of genes. Genes may correspond to weights of a neural network. Each 
organism in the population will be evaluated by a fitness function. The ability of an organism to 
accomplish an assigned task is directly proportional to its fitness value. Based on these fitness 
values, parents will be selected and crossover between their genes will occur. Neural networks 
with more effective weight combinations will tend to pass more of their weights to the next 
generation. The resulting children from the crossover will be used as the next generation and the 
process will repeat itself for a certain number of generations. According to the “survival of the 
fittest” principle, the skill of organisms should improve in subsequent generations if conditions 
are appropriate. 
 

Related Works 
 

The complexity of Reversi is higher than checkers, but lower than chess (Chong et al., 
2005). Due to this fact, Reversi is the topic of many research endeavors. We will be using an 
approach similar to the configuration used by Chong et al. Their most interesting variation was 
the addition of a spatial preprocessing layer. They were only able to achieve master level play 
using a spatial preprocessing layer; the agents lacking this aspect were much more difficult to 
train and did not achieve levels of play comparable to the spatial neural networks (2005). Our 
approach chooses to exclude this type of layer, to determine how much spatial information can 
be learned by a basic neural network. 

Our strategy is also like Tuponja and Šuković’s, however they used the popular puzzle 
game 2048. The primary difference in their approach was the evolution style. These networks 
were also allowed to change in shape during the evolutionary process (2016). This approach 
would be an interesting technique to explore in future work.  

Shahzad et al. compared the level of play achieved by different evaluation functions. 
They included a standard Weight Piece Counter (WPC), Multilayer Perceptron Networks (MLP), 
Temporal Difference Learning (TDL), and a Monte Carlo algorithm using Tournament Play 
Technique. Of the evaluation functions examined, MLP, the strategy used in our work, was 
found to achieve the highest level of play (2012). Their results were encouraging for the 
purposes of our project, as we will be applying MLPs within our agents.  

Festa and Davino proved fairly strong play can be achieved by using a minimax 
algorithm with a strong evaluation function (2013). Adding a minimax algorithm to our existing 
techniques could lead to further improvement of the skill of our organisms, but we have chosen 
to exclude it. 



A large source of inspiration for our research project was work by David Fogel (2002). In 
his book, he discusses using genetic algorithms to train a neural network with a spatial 
preprocessing layer for the game of checkers. Their agents also used a minimax algorithm to 
search for optimal board states. Their agent Blondie24 achieved master levels of play, defeating 
Chinook, the contemporary computer checkers champion. Fogel is careful to create checkers 
players without using any predefined human knowledge, which is a principle our work tries to 
follow as well.  

 
Methodology 

 
 The goal of our experimentation is to create a strong Reversi player who utilizes a neural 
network to make its decisions throughout the game. The player will analyze each available move 
according to a heuristic value calculated by its feedforward neural network. The inputs for the 
initial layer of the neural network are generated from the Reversi game board. Inputs will be 
either −1, 0 or 1 representing an enemy tile, an empty tile, and a friendly tile respectively. The 
highest heuristic value corresponds to the best move to choose. Similarly, poor move choices 
will have low heuristic values. Neural networks differ by their assigned or evolved weights. 
Finding a good combination of weight values is critical to creating a good player. 

To increase the skill of our players, we utilize a genetic algorithm to generate a 
population of organisms to evolve these weights. Organisms are assigned a fitness score based 
on the outcomes of games played against their neighbors. Based on the fitness score, parents are 
selected from the existing organisms to crossover (mix) their genes and create a new generation 
of players. In our case, we consider the weights of the neural network to be the genes. Every 
1,000 generations, our generated players’ skill level is analyzed by playing every organism 
against every organism from another population. The opposing population is either the first 
generation or a subsequent increment of 1,000 generations. Pseudocode representing this process 
is shown in Figure 1. 
  



 
currentPopulation ← Generate initial population 

 For whichGeneration ← 1 to numGenerations: 
  For each organism in currentPopulation: 
   Play Reversi against 6 neighbors as Black 
  For each organism in currentPopulation: 
   Select parents using fitness score based on Reversi results 
   Crossover parent genes 

Mutate genes 
Create a new organism in newPopulation using genes 

  currentPopulation ← newPopulation 
  If  whichGeneration mod 1000 = 0: 
   Save population for later evaluation 
Fig. 1:  Evolutionary Process Pseudocode 
 
 In these experiments, the initial generation is produced with no prior knowledge of the 
game. Established human strategies will not be given to the organisms in any way. Any 
appearance of intelligence they display is exclusively from the results of the genetic algorithm. A 
popular approach to increase skill level is to include a spatial preprocessing layer to provide 
organisms with more knowledge of the spatial relations of the board (Chong et al., 2005). 
However, our experiments will exclude this layer to see if our agents can learn spatial 
information on their own. 
 
Vanilla Configuration 

To begin our project, we settled on a basic set of parameters: a “vanilla” configuration. 
Features of the vanilla configuration include the following. 

Games will be played on a Reversi board with size 8 × 8, with the center 4 tiles occupied 
by 2 black and 2 white tiles in a diagonal fashion. Neural networks will have 64 inputs, a single 
hidden layer of 8 neurons, and a single output neuron. Weights are generated at the start of an 
evolution by using a normal distribution with a mean of 0 and standard deviation of 1. The 
activation function used by the neural network will be softplus: 𝑓𝑓(𝑥𝑥) = ln( 1 + 𝑒𝑒𝑥𝑥). 

The final output neuron will not apply the activation function to its calculated sum. These 
networks will be exclusively feedforward ANNs, meaning there will be no cycles within the 
neural network. To generate the inputs given to our neural networks, if a space is occupied by a 
friendly tile, the value of the corresponding input is 1. For enemy tiles we use −1 and for empty 
tiles 0.  

The size of a population is 10 × 10 arranged in a hexagonal pattern. Each organism plays 
12 games, 6 as white and 6 as black, against its 6 neighbors. Organisms along the edge play 
organisms along the opposite edge. This creates a torus-shaped population. Organisms will only 
be allowed to search one move ahead of the current board state, thus no minimax algorithm is 



implemented within their gameplay. To rate our organisms, each is assigned a fitness score 
during this stage. To calculate the value, we use a combination of wins, losses, ties, and the 
number of pieces controlled by a player at the end of a match. Wins are awarded 64 points, 
losses earn 0 points, ties are awarded 32 points, and the number of pieces controlled at the end of 
the game is added to this sum. In this scheme, game result is most important, but emphatic wins 
count more than close ones. 

Each organism breeds with another organism to produce a child organism. In the vanilla 
configuration, parents are selected from the 6 surrounding neighbors using assigned probabilities 
based on their fitness scores. The lowest-scoring neighbor is thrown out and its fitness score is 
subtracted from the remaining neighbors’ fitness scores. This new fitness value is directly 
proportional to the probability it will be selected as a parent.  

New organisms are created by crossing over the genes of the two selected parents. For 
each gene, there is an equal probability it will come from the mother or the father. Mutation 
occurs for every gene and will add a random number generated using a normal distribution with 
a mean of 0 and a standard deviation of 1. These organisms will go on to play games, restarting 
the process and creating another new generation. 

 
Variations on Vanilla 

Of these properties, several settings will be varied for each future configuration. Each 
experiment will only have a single change from the vanilla configuration, so as to isolate the 
variable and make direct comparisons to vanilla. 

 
Activation Functions: 

1. Rectifier:  𝑓𝑓(𝑥𝑥) = �
0 for 𝑥𝑥 < 0
𝑥𝑥 for 𝑥𝑥 ≥ 0

 

2. Sigmoid:  𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 

3. Softsign:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1+|𝑥𝑥|

 

4. Threshold:  𝑓𝑓(𝑥𝑥) = �
0 for 𝑥𝑥 < 0
1 for 𝑥𝑥 ≥ 0

 

Many activation functions can be used with neural networks. For our neural networks, in 
addition to the vanilla softplus, we have chosen to try using rectifier, softsign, sigmoid, or 
threshold activation functions. Changing the activation function results in a slight change to the 
output summations of each neuron. Different activation functions generate different levels of 
success and some activation functions are more appropriate for some problems than they are 
others. Notice that rectifier and softplus have an infinite range and sigmoid, softsign and 
threshold have a finite range. 

 
Mutation Types: 

5. Uniform Shake 



6. Cauchy Shake 
7. Normal Shake and 1% Replace 

We will evaluate several types of mutation for the breeding stage of evolution. Instead of 
adding a number to each weight from a normal distribution, Variation 5 will use a uniform 
distribution between −√3 and √3. These values were chosen to get a similar mean and standard 
deviation to the other distributions. Variation 6 also adds a random number, but it is generated 
using a Cauchy distribution with an 𝑥𝑥0 of 0 and a γ scale parameter of 1. A 1% replace mutation 
may be applied as well. This mutation re-initializes a gene with a 1% probability, replacing it 
with a randomly generated number using the same uniform distribution mentioned previously. 

 
Network Shape: 

8. 1 Neuron 
9. 8-3-1 Neurons 
10. 16-4-1 Neurons 

Neural networks may vary by shape. The most basic shape is a single output neuron, 
which will be referred to as 1N. In this case, 64 weights approximate the value of owning the tile 
corresponding to the weight. The 65th weight is a bias weight. Recall the default shape is 8 
neurons in a hidden layer, with one neuron at the output layer. This shape will be referred to as 
8-1N. Once neural networks begin to have hidden layers, relationships between weights and the 
board are less intuitive since a single weight could be used for more than one calculation. It is 
also possible to have multiple hidden layers, and we have chosen two shapes from this category 
to test. 8 neurons in the first hidden layer, 3 neurons in the second hidden layer, with a single 
output neuron will be referred to as “8-3-1N”. “16-4-1N” similarly represents 16 neurons in the 
first layer, 4 neurons in the next layer, and a single output neuron. It is significant to note that 
larger neural networks will have more weights, be capable of learning more interesting features, 
but they will also take more generations to arrive at these conclusions. 

 
Parent Selection: 

11. Father 7 Fitness Probability 
12. Both 7 Fitness Probability 
13. Best Father 6 
14.  Best Father 7 
15. Best Both 7 

Parent selection has also been chosen as a variable to consider. Figure 2a shows the 
surrounding bachelors with their raw fitness scores. Adjusted fitness scores are shown in figure 
2b. We use those adjusted scores proportionally to generate probabilities that the corresponding 
bachelor will be selected. Some of our parent selection variations below will choose from 6 
neighbors, as does vanilla. Some consider 7, including the 6 neighbors and the center organism. 



   
 Fig. 2a: Raw Fitness Scores Fig. 2b: Scaled Fitness Scores 
Fig. 2:  Parent Selection Example 

 
Variation 11 will select the father from all 7 possibilities using a probability directly 

proportional to their fitness scores. If the center organism is chosen as the parent, the organism 
will have two identical parents. Variation 12 will choose both parents according to the fitness 
probabilities; however, the parents chosen will not be allowed to be the same organism.  

Variations 13, 14, and 15 are deterministic parent selections. Variation 13 chooses the 
best father, based on fitness score, from the 6 neighboring organisms, with the mother in the 
center. Variation 14 chooses the best father from all 7 options, with the mother in the center. 
Variation 15 takes the top two organisms from the 7 possibilities. 
 

Results 
 

 Each variation was evolved for 10,000 generations and populations were saved and 
evaluated. Every 1,000 generations, each organism in the population plays each organism from 
the first generation. Winning percentages were calculated by adding the number of wins to half 
the number of ties and dividing by the total number of games played. Our goal was to measure 
the progress made by an evolution from its first, random generation. 

The evaluation approach previously described was found to be a bit unfair. The skill of 
one of our initial populations was especially poor and resulted in the Best Both 7 parent selection 
becoming an outlier for the first run. To attempt to achieve a fairer comparison, we found an 
improved evaluation method. First, we created a much larger population of opponents and play 
each 10,000th generation against this baseline population of size 50×50. Each organism within 
the baseline population uses the vanilla configuration and is newly initialized without 
experiencing evolution. Winning percentages were calculated using the same strategy described 
above. We used this new evaluation method for all graphs below.  

These experiments were repeated for a second run from a newly randomly initialized 
population for another 10,000 generations and evaluated using the baseline method described 
above. 



 
Vanilla, 6 Times 
 We chose to run the vanilla configuration 6 separate times. The initial populations are 
randomly generated, so each of these evolutions will begin at a different starting point. The 
mutation along the way is also random, so one thread of evolution will never be the same as 
another. Results are very closely related. At the final generation, all populations achieved 
winning percentages against the baseline within an approximate range of about 3%. Each run 
experiences a large amount of progress from 0 to 1k, and subsequent generations cluster around 
similar winning percentages. The amount of variation we see among the 6 vanillas is due entirely 
to randomness. We will need to see larger differences in comparisons of the variants to be 
convinced that one is in fact better than another. 
 

 
Fig. 3: 6 Vanilla Runs Compared to Baseline Population 

 
Activation Functions 

Activation functions with similar shapes performed relatively similarly throughout their 
evolutions. It seems that activation functions which can output arbitrarily large numbers have 
done better than functions which restrict their output values to a small range. The grouping of 
similarly shaped activation functions holds true for all graphs and the direct comparison of 
activation functions. Sigmoid appears to perform the worst. This was a surprising result, as 
sigmoid has been typically the standard activation function used with neural networks.  

At each generation, softplus had the highest or second highest winning percentage, even 
when compared to the baseline population. When each 10,000th generation of each activation 
function were played against each other, the softplus population beat each other population one 
on one. Due to these properties, our decision to make softplus the vanilla setting was reaffirmed.  
 



 
 Fig. 4a: Activations Run 1 vs. Baseline Fig. 4b: Activations Run 2 vs. Baseline 
 
Mutation Types 
 At first glance, it is clear the Cauchy shake is the most volatile mutation type. This could 
mean that the distribution’s probability of producing exceptionally large or small mutations is 
too great. When the final generations were played against each other, Cauchy’s performance was 
remarkably poor. It did not come close to beating any other population and lost horribly against 
the baseline population. However, Cauchy’s final population was the worst generation across the 
board. There could be some interesting ways to harness Cauchy’s abilities. The 3 peaks in its 
performance might mean it can reach more local optima throughout its evolution. 

Uniform and normal had similar progress and performance overall. The only difference 
between variant 7 and the vanilla normal shake is the replacement mutation occurring with a 1% 
probability. It seems to make the generations perform more poorly. 

 

 
 Fig. 5a: Mutation Run 1 vs. Baseline Fig. 5b: Mutation Run 2 vs. Baseline 
 
Neural Network Shapes 
 Despite having varying numbers of layers and neurons, most of these variations made 
similar progress, with each of their generations falling within an 8% winning percentage range. 
When the 10,000th generations were played against each other, differences were more evident. 1 
Neuron performed the best, and except for variant 10, larger neural networks did poorer than 



small neural networks. This could mean larger neural networks need more time to be trained, 
since they have more weights that need to be optimized. The relationship between weights is also 
more complex, another reason more generations may be required. 
 Within the baseline comparison for run 2, variant 9 did remarkably poorer than run 1, 
which could indicate that the initial population of the evolution was a poor starting position. 
Another explanation could be that it was unable to find any local maximum given the mutations 
that occurred along the way. Running these experiment parameters for additional runs could help 
to explain the sharp drop in performance. 
 

  
 Fig. 6a: Layer Sizes Run 1 vs. Baseline Fig. 6b: Layer Sizes Run 2 vs. Baseline 
 
Parent Selection 
 Overall, most of the variations of parent selection seem to perform similarly. However, in 
the progress graph for the second run, Best Both 7 was an outlier. Using the baseline population 
indicated the population was not as skilled as the first run graph suggests. According to the 
baseline results shown below, parent selection does not seem to have a large impact on evolution 
performance. 
 

 
 Fig. 7a: Parent Selection Run 1 vs. Baseline Fig. 7b: Parent Selection Run 2 vs. Baseline 
 
 



Conclusions 
 

• Given our style of input selection, the best activation function to use for this situation was 
softplus, with rectifier a close second. With our settings, sigmoid had the poorest 
performance, despite being one of the most commonly used activation functions. Our 
findings suggest it is better for activation functions not to restrict their output values 
within a finite range. 

• According to our findings, additional layers do not increase performance in the first 
10,000 generations. It could indicate that additional generations are needed for larger 
networks to reach their optimum levels of play. Of course, it may be that some untried 
combination of settings would be better at finding effective combinations of genes. 

• It seems that selecting a distribution with skinnier tails rather than fat tails performs 
better. We also discovered that a 1% replacement mutation hurts performance overall. 

• Parent selection does not seem to be a major factor for performance within the 
evolutions. 

 The agents resulting from our generations can beat completely random agents. However, 
when played against a novice human player or basic computer programs on easy settings, they do 
not perform well. The amount of information the agents have learned does not amount to 
intelligence. Since we started with absolutely no hard-coded human knowledge, our results are 
still significant. 
 

Future Work 
 

 There are obviously many combinations of settings which were not analyzed by this 
research project and there are many other settings which could be varied. Any combination not 
analyzed by this project could produce interesting results. Settings which were not mentioned 
could include weight initialization for the first generation of organisms. Other styles of crossover 
could be produced, such as swapping sections of genes rather than individual genes. Another 
interesting type of mutation could be swapping two weights within a neural network. Perhaps 
another type of fitness function would be more successful. Possibilities are potentially effectively 
endless in this regard. 
 Since the weights of a single neuron network are quite intuitive, it could be beneficial to 
apply some human intuition to these weights. A basic principle of Reversi is the fact that corners 
are extremely valuable and tiles adjacent to the corners are detrimental to own. Using simple 
principles such as this, weights could be hard coded for an agent and tested against an evolved 
agent. We could also use similar intuition to add some sort of bias to an initially generated 
population and begin an evolution using this starting point. 
 It is possible for the value of a tile to have a different importance for the black player or 
white player. In our current configuration, a neural network considers the value of a tile for black 
to be the same value, but negative, for white. It could be beneficial to allow 128 inputs rather 



than 64 inputs for our neural network. Each tile would have an input corresponding to the value 
for black and the other would represent the value for white. 
 Since larger numbers of weights take more evolutionary time, narrowing down the 
number of inputs could have interesting results. The 8 lines of symmetry of the board could be 
used to produce 10 weights, rather than 64 weights. Perhaps these networks would be capable of 
reaching their optimum levels of play more quickly. 
 One flaw of our fitness function is that it does not take the strength of the surrounding 
neighbors into account. An organism could have neighbors that play poorly, and its fitness score 
could be quite high. However, an objectively stronger organism could have lost many games due 
to the strength of his neighbors, and its fitness score could be quite low. We have not yet tried to 
balance results based on the skill of the neighbors. To overcome this problem, varying 
subdivisions of the population could help. Using a strategy like the “critters” cellular automaton, 
at each new generation, the subdivisions would change. Each organism would play each other 
organism within its subdivision. If subdivisions from one generation to another were observed at 
the same time, the subdivisions would overlap. This could help equalize the playing field over 
time. Alternatively, Colley’s matrix method (2002) or a similar approach could take strength of 
opponents into account when estimating organism strength. 
 Currently, the organisms do not seem to be capable of learning large amounts of spatial 
information of the board. As Chong et al. discovered, it is quite difficult to achieve master levels 
of play without a spatial preprocessing layer. Adding this layer could strengthen the skill of our 
players by a large margin (2005). 
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