
Static Determination of Allocation Rates
to Support Real-Time Garbage Collection

�
Tobias Mann Morgan Deters Rob LeGrand Ron K. Cytron

Department of Computer Science and Engineering
Washington University in St. Louis�������	�	��
���
	����������
�� �������	��
�
��������� ��"!�#$����% &�'(�)���*% ��
+'

Abstract
While it is generally accepted that garbage-collected languages of-
fer advantages over languages in which objects must be explicitly
deallocated, real-time developers are leery of the adverse effects a
garbage collector might have on real-time performance. Semiauto-
matic approaches based on regions have been proposed, but incor-
rect usage could cause unbounded storage leaks or program failure.
Moreover, correct usage cannot be guaranteed at compile time.

Recently, real-time garbage collectors have been developed that
provide a guaranteed fraction of the CPU to the application, and the
correct operation of those collectors has been proven, subject only
to the specification of certain statistics related to the type and rate of
objects allocated by the application. However, unless those statis-
tics are provided or estimated appropriately, the collector may fail
to collect dead storage at a rate sufficient to pace the application’s
need for storage. Overspecification of those statistics is safe but
leaves the application with less than its possible share of the CPU,
which may prevent the application from meeting its deadlines.

In this paper we present a static analysis to bound conservatively
an application’s allocation rate. The analysis is based on a data flow
framework that requires interprocedural evaluation. We present
the framework and results from analyzing some Java benchmarks.
Because static analysis is necessarily conservative, we also present
measurements of our benchmarks’ actual allocation rates.

Our work is a necessary step toward making real-time garbage
collectors attractive to the hard-real-time community. By guaran-
teeing a bound on statistics provided to a real-time collector, we
can guarantee the operation of the collector for a given application.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Memory management (garbage collection)

General Terms Algorithms, Languages, Measurement

Keywords Real-time Garbage Collection, Static Analysis, Allo-
cation Rate,

This report is an extended version of [22]. The work was sponsored
by DARPA under contract F33615–00–C–1697 and by the AFRL under
contract PC Z40779.

1. Introduction
There is considerable interest in Java as a software development
vehicle for real-time and embedded applications. There are several
reasons for this, some of which are listed by the National Institute
of Standards and Technology (NIST) [7]:- Java’s high level of abstraction allows for increased program-

mer productivity.- Java is relatively easier to master than C++.- Java is relatively secure, keeping software components pro-
tected from one another.- Java supports dynamic loading of new classes.- Java is highly dynamic, supporting object and thread creation at
runtime.- Java is designed to support component integration and reuse.- The Java programming language and Java platforms support
application portability.- The Java technologies support distributed applications.- Java provides well-defined execution semantics.

Standards like the Real-Time Specification for Java (RTSJ) [4]
have emerged that offer facilities for the specification, scheduling,
and management of real-time structures, such as periodic threads,
asynchronous events, and high resolution timers. There is general
agreement that the efficient and predictable execution of such struc-
tures is necessary for the acceptance of the RTSJ or any other Java
implementation that claims real-time performance.

However, when it comes to storage management, there is not
yet universal agreement as to how to make object allocation and (in
particular) automatic deallocation reasonably predictable. Included
as a core requirement in the NIST specification for a real-time Java
is the following [7]:

Any garbage collector that is provided shall have a bounded
preemption latency. The preemption latency is the time
required to preempt garbage collection activities when a
higher priority thread becomes ready to run.

Essentially, a garbage collector suitable for real-time applications
must be able to collect sufficient storage so that the application does
not fail for lack of storage, and must do so without denying the
application reasonable use of the CPU(s). Currently, there are two
approaches to satisfying that requirement:

Avoid traditional garbage collection. Specialized storage-alloc-
ation structures can be introduced to obviate the need for traditional
garbage collection. For example, the RTSJ introduces scopes in
which objects can be allocated. Hard real-time threads are allowed

1 2005/9/29

A

B

C

D E
A B C

D

E

(a) (b)

Figure 1. . �/�0 �12�/�� 435��
6�)�� 	���(�5�"%87:9�;<��=(�&>�?��=��@����1A�������������B ���C&D�����E B/F ���������(�G 4���H3" 	IJ���KIJ�L�MIJ���"N�7�O4;K��=(�&P�Q�R� ���5�	���/�� 435��(����I �4�	�Q������%$S 1LTU���VI ��
2�) <����1A���W�������YXZ
���=��[3��� ������	�\&$ 4'	�
21A�"IJ���I]����^��="I �P�/�� �3"�^���)��I ���	��������%
to access only these objects allocated in scopes.1 The rules for
scope creation are established so that a reference count on the entire
scope suffices to determine liveness of all objects in the scope.
The reference count is affected by threads entering and exiting
the scope. When the last thread exits a scope, all of the storage
described by the scope is reclaimed en masse.

While the task of deallocation becomes simple and predictably
bounded, the burden of correct usage of scopes falls on the pro-
grammer, with the following disadvantages:- The application is constrained as to how objects in scopes can

reference each other, as depicted in Figure 1: objects in one
scope may not refer to objects in another scope that might be
shorter-lived.2- Scopes are a specialized form of regions [33], and programs
can leak an unbounded amount of dead storage in a region.
For example, consider a doubly-linked list in an RTSJ scope.
Because they reference each other, all container cells must
be allocated in the same scope. Thus, repeated deletion and
insertion will leak uncollectible objects in the scope while not
increasing the live-storage requirement of the program.- Scoped memory areas make the construction of complex soft-
ware highly unwieldy. Software designs utilizing scopes often
involve ad hoc user-level mechanisms for reusing scoped stor-
age (and the scopes themselves), use threads not for concurrent
computation but to keep scopes from being reclaimed, or suf-
fer from a high degree of complexity in thread intercommuni-
cation. A useful discussion of software development using the
RTSJ’s scoped memory mechanism can be found in [26].- It is undecidable whether a program adheres to the various
rules associated with scoped memory. This can be shown by
reduction from the halting problem [14] as follows. Suppose
that we simulate a regular Java program in a universal Turing
machine _ . Because a regular Java program does not use
scopes, we can arrange _ so that it executes an illegal scoped
memory reference just after the simulated program halts. Thus,_ suffers an illegal scope reference if and only if the simulated
program halts. Thus, deciding if _ executes an illegal scoped
memory reference also decides whether the simulated program
halts.

Traditional garbage collection can also be avoided by using tech-
niques such as reference counting [36] and contaminated garbage

1 Access is also permitted to immortal memory, from which objects are
never collected.
2 This constraint on object referencing behavior is intended to avoid the
manufacture of dangling pointers. Together with other constraints that the
RTSJ makes, it ensures that no external pointers exist to scoped objects
when their scope is reclaimed.

collection [6], but those collectors are inexact and could thus suffer
from the same leakage problems as scopes.

Use a real-time garbage collector. A real-time garbage collector,
such as Metronome [3] or Perc [25], is assigned the responsibil-
ity of detecting and collecting dead storage. The application, of-
ten called the mutator in the literature, need not change, but the
application’s behavior strongly influences how the collector must
operate so as to guarantee sufficient availability of storage.

Because of the burden placed on a programmer when faced with
specialized storage-allocation structures, real-time garbage collec-
tion is the method of preference. The RTSJ with its scoped memo-
ries was arguably formulated in a context that doubted the veracity
of a real-time collector. More recently, research has proven [3, 2]
that collectors such as Metronome operate correctly if the mutator’s
behavior is properly described. Fortunately, a mutator’s relevant be-
havior can be distilled into a few statistics.

At issue is whether a programmer can reliably provide such
statistics. Even if a programmer knows the application well, use of
libraries or other code greatly complicates manual computation or
estimation of the statistics. If the provided statistics do not bound
the actual behavior of the mutator, then the collector may fail to
collect dead storage at a rate sufficient to pace the application’s
need for storage. One could try to overspecify these statistics, but
this is still an educated guess on the part of the developer. Also,
overspecification of the statistics is safe but leaves the application
with less than its possible share of the CPU, which may prevent the
application from meeting its deadlines.

In this paper, we present a static method (data flow framework)
for determining a bound on the Maximum Mutator Allocation
Rate (MMAR) of a program. This kind of analysis is done at
compile time and it is crucial to the correct operation of a real-time
collector.

Our paper is organized as follows. Section 2 provides some back-
ground to our problem domain. In Section 3 we summarize the
statistics required by collectors such as Metronome to guarantee
correct operation and identify the particular property that is the
target of this work. For real-time programs, correctness here im-
plies never running out of storage and never starving the mutator
of access to the CPU for an unreasonable or unbounded amount of
time. Section 4 presents our solution. This is followed by a discus-
sion of multi-threading in Section 5, and experiments determining
the MMAR are presented in Section 6. Because static approaches
are necessarily conservative, we also report on our benchmarks’
MMAR from actual executions. Section 7 discusses related work.
Finally, Section 8 concludes. An appendix provides additional de-
tails about a range propagation implementation that we have devel-
oped to support our MMAR analysis.

2. Background
Before going into details on what a real-time garbage collector
needs to know about a mutator program we will provide some back-
ground information. Issues, such as what it means for a system to
be real-time and what challenges real-time constrains poses for the
memory management of these applications, will be discussed. We
will also cover general garbage collection techniques and collection
techniques specific for real-time collectors. Readers familiar with
these areas can skip or skim through this section.

2.1 Real-Time Constraints
A real-time application is one where, in addition to semantic cor-
rectness, there is a notion of temporal correctness. A real-time sys-
tem will attempt to schedule all real-time threads in a manner that
will maximize some metric of how well the temporal constraints of

2 2005/9/29

the application are met. A feasibility analysis determines if a given
schedule has an acceptable value for the metric used. If the fea-
sibility analysis fails, then either some code must be rewritten or
the temporal constraints must be relaxed. Our work is mostly con-
cerned with systems, which the literature refers to as hard-real-time
systems. The metric used for these systems is the number of missed
deadlines, and the only acceptable value is 0 [4].

The addition of these temporal constraints to the semantic
correctness of a program implies that any memory management
scheme used in a real-time system must have a predictable ex-
ecution and an upper bound on the preemption latency for any
real-time thread.

2.2 Garbage Collection Techniques
This section will present some general ideas, concepts and tech-
niques associated with modern garbage collection implementa-
tions. For a more in-depth coverage of this, see Paul Wilson’s
work [36].

There are two general techniques used by any garbage collector
to distinguish live memory from garbage, reference counting and
tracing. In a reference counted system, each object keeps a count
of the number of references that point to it. When this count tran-
sitions from 1 to 0 the object may be collected. One advantage of
reference counting is that it is incremental by design: the work of
the collector (the updating of the reference counts) is interleaved
with the program’s execution. This incremental property of a refer-
ence counted collector is attractive for real-time systems. However,
as we mentioned in Section 1 this technique is inexact, and thus
may suffer from memory leakage problems.

The problem of leaking memory makes a reference counted sys-
tem unsuitable for deployment in a real-time environment. Instead,
we turn to collectors that rely on tracing to differentiate live mem-
ory from garbage. A tracing collector builds and traverses a graph,
called the reachability graph, of the objects that are reachable by
the mutator. In doing so, the collector identifies the objects that are
live. To build this graph, the collector starts with the root set, also
know as the live roots. The root set typically contains the pointers
that reside on the stack and static pointers. It follows the pointers
in the root set to look for pointers to other objects. This way the
collector will eventually traverse over all objects reachable to the
mutator program. Tracing collectors come in many varieties. We
will look at some of these in the next couple of sections.

2.2.1 Mark-Sweep Collection
As its name suggests, mark-sweep collection has two major phases,
mark and sweep. During the mark phase the mutator’s runtime heap
is traced as aforementioned, using either a breadth-first or a depth-
first technique. All objects that the collector touches are marked
as live. When the marking phase completes the sweep phase takes
over. In this phase memory is examined to find all unmarked objects
and reclaim the space they occupy.

There are three major problems usually identified with mark-
sweep collection [36]:

Fragmentation: If the mutator allocates objects with varying
sizes, the heap will likely become fragmented, with the ad-
verse effect that the allocator may fail to allocate memory for
an object even when enough space is available. This problem
can be made less severe by using free lists of varying sizes and
allocating objects from these lists using a best fit approach.

Computational complexity: The major cost of this technique is
the mark phase. The mark phase cost is proportional to the
amount of live memory that must be traversed. All live objects
must be marked imposing an inherent limit on efficiency.

Locality of reference: Objects retain their place in memory through-
out their lifetime. This means that when a collection cycle fin-
ishes live objects will be interspersed in memory with the free
space gathered from the collected objects. New objects are then
allocated in these free spaces. The end result is that objects of
different ages will be scattered all over the heap, which in turn
may adversely affect locality of reference.

2.2.2 Copying
A copying collector gets its name from the fact that it does not ac-
tually collect garbage. Instead, it moves all objects known to be
live into a special region of memory. The remainder of the heap
is then known to be garbage. The most common copy collector is
the semispace collector [12] using the Cheney copying traversal
algorithm [8]. In this scheme, the heap is partitioned into two equa-
sized parts, called semispaces. At runtime, the executing program
only has access to one semispace, called fromspace. At collection,
fromspace is traced and the live objects are copied over into the
unused semispace, called tospace. When collection completes the
roles of tospace and fromspace are reversed. The advantage of this
approach over mark-sweep is that it avoids fragmentation of the
heap and locality of reference may be improved because it avoids
the problem caused when live objects retain their place. However,
the as with mark-sweep there is an inherent limit on efficiency be-
cause all live objects must be moved. Copying collectors also suf-
fers from the following disadvantages.

Increased Memory Footprint: The mutator only has access to
fromspace, reserving tospace for use by the garbage collector.
This means that the amount of heap memory available to the
mutator is cut in half, effectively doubling the memory footprint
of the application.

Read Barrier: When implemented incrementally (see Section 2.3.1)
a copying collector must employ a read-barrier (see Sec-
tion 2.3.2, which adds additional cost.

2.2.3 Hybrid
Some collectors, such as the Metronome [3] and many generational
garbage collecting systems [36], that utilize both the mark-sweep
and copying techniques. In the case of the Metronome the bulk of
the collection work is done using the mark-sweep technique and
copying is only used to defragment the heap as needed. Genera-
tional collectors on the other hand can be seen as being mostly a
copying collector where objects that are found to be live are copied,
or tenured, to a different region of memory. Each region, holds
a generation of objects, thus the name of the technique, where a
generation is defined by how many collections an object has “sur-
vived”. The region of memory holding the oldest generation is of-
ten collected using a mark-sweep technique. For more details on
generational collection and other garbage collection techniques see
Wilson’s thorough survey paper [36].

2.3 Real-Time Garbage Collection
The temporal constraints of real-time applications places special re-
quirements on real-time garbage collectors. Traditional techniques,
such as stop-the-world collectors, are not suitable in these environ-
ments. It is impossible for a real-time scheduling routine to deter-
mine whether or not the mutator program will be able to meet its
temporal constraints if the garbage collector can take control over
the CPU at anytime during execution and keep control for an un-
bounded period of time. A fine-grained incremental garbage col-
lector, which will interleave the collectors work with that of the
mutator, is needed. All the techniques discussed in Section 2.2 can
be made incremental.

3 2005/9/29

Before After

A

B

C

D

E

A

B

C

D

E

Before After

A

B

C

D

E

A

B

C

D

E

(a) (b)

Figure 2. ` '��/����IJ�(�Q��=��Lab���	3�%+7)9	;>��=(�&>�K=((&c��=��d�E'����(�) 	�e������	� �/���K��=��<=�����3f�� g�������(���Yh� "�(�MIJ�(�g�"�"� B �(�5��
> B/F �������fX\����
@T�N7�O�;8��=(�&>�Y=(�&\��=��?�^'����(�) ��^�����?�	� �/���Z��=��?=����	3f�� <��=��(�E��=���� 4� � �����) 	�i&GIJ� ��������� �"IJ�j���^ B/F �����k��=��(�ZI �k�)�MIJ� ��� I]��"
� B/F ������lD%
2.3.1 Incremental
Using an incremental technique for garbage collection is the only
viable approach for a system that wants to claim real-time perfor-
mance. However, it does add additional complexity to the collec-
tor. If the mutator is allowed to alter (mutate) the heap while the
garbage collector is building the reachability graph, then the collec-
tor needs some mechanism for keeping track of those changes. To
facilitate our discussion of incremental garbage collectors we will
classify memory objects in accordance with the tricolor-marking
scheme [11]. In this scheme, memory objects are classified using
the three colors white, grey, and black. For the remainder of this
section we focus on what happens during the collection cycle.

White: White means that the memory object has not been visited
by the garbage collector. All objects that are white by the end
of the collection cycle are reclaimed.

Grey: Grey means that the memory object has been visited but not
scanned. Scanning refers to the collector examining the object
for references to other memory objects. In terms of Breadth-, or
Depth-First Search, grey objects are the objects in the fringe of
the search tree.

Black: Black means that the memory object has been visited and
scanned. All objects that are black by the end of the collection
cycle are retained.

When garbage collection begins, all objects are white and when
it ends all objects are either white or black. However, in an in-
cremental collector the intermediate states are very important be-
cause of the ongoing mutator activity. For example, the muta-
tor may change the reachability graph so that an object already
marked black (live) becomes unreachable, and thus should have
been marked white (dead). These objects that “die” during a collec-
tion cycle, but go uncollected, make up the floating garbage men-
tioned in Section 1. The floating garbage cannot be collected until,
at the earliest, the subsequent collection cycle. Therefore, it may
increase the applications memory footprint beyond maxlive.

Another, more serious, problem is that the mutator may either
create a new object, or move references around so that a black
object now has a reference to a white object. This white object is
live; however, if the only references to it are from black objects then
it will never be visited by the collector, and thus the collector will
erroneously reclaim it at the end of the collection cycle. Figure 2
illustrates the problems here discussed.

Stated more formally, any correct incremental garbage collector
must maintain the invariant that no black object has a direct refer-
ence to a white object. To ensure that newly allocated objects pre-
serve the invariant new objects are often allocated black. However,
how can a collector be sure that the mutator does not move refer-
ences around in a manner that violates the invariant? The obvious
solution would be to recompute the reachability graph whenever
the mutator changes it. However, this is an unacceptable solution

since there can be no guarantee that such a garbage collector ever
completes its collection cycle. Next, we will discuss two techniques
that address this problem.

2.3.2 Read and Write Barriers
To ensure that the tricolor invariant is maintained, either the mu-
tator must be prevented from reading white objects or it must be
prevented from writing a reference to a white object into a object
colored black. The approach that prevents the mutator from reading
white objects is called a read barrier. The read barrier examines
all attempts of the mutator to access the heap. If it detects an ac-
cess to a white object, it will color that object grey by placing it in
the fringe of the reachability graph. Consequently, during a collec-
tion cycle any references held by the mutator will be either grey or
black. Thus, the mutator cannot write a reference to a white object
into a black object.

The other approach is to allow the mutator to read whatever
references it wants, but trap all attempts of the mutator to write
a reference into an object. This technique is conveniently called
a write barrier. Write barriers come in two flavors that differ on
which aspect of the problem they address. The mutator can cause
problems for the collector by writing a reference to a white object
into a black object and destroying the original path to the white
object. For example, the situation shown in Figure 2b would not
present a problem if the reference from object B to object C had
been left intact. One write barrier technique addresses the problem
by ensuring that no path to a white object can be broken without
providing the collector with another path to that object. The other
technique records references written into black objects and either
color the referenced objects grey, or reverts the black object to grey.

Out of the two approaches to maintaining the tricolor invariant,
the read barrier is generally considered more expensive because
heap reads are much more frequent than heap writes. However,
as mentioned in Section 2.2.2 copying collectors, need to use a
read barrier to ensure that the mutator only sees references to valid
copies of objects.

2.4 How a Real-Time Garbage Collector Affects the Mutator
To quantify the effect that the real-time garbage collector has on the
mutator programs ability to meet its temporal requirements we letmon

symbolize the total amount of time given to the mutator during
a collection cycle.

2.4.1 Minimum Mutator Utilization (MMU)
Traditionally, approaches to real-time garbage collection have
quantified their impact on the execution of the mutator program
by measuring the maximum pause time experienced by the muta-
tor. However, as noted by Bacon et al. [3], a mutator thread that
experiences a period of low CPU utilization may fail to meet its
temporal requirements even though all individual pause times are
short.

Therefore, a more accurate measure of a real-time collector’s
effect on the mutator program is MMU. Cheng and Blelloch [9]
defines MMU for a given time interval,

mon
, as the smallest fraction

of CPU utilization experienced by the mutator over all intervals of
width

mon
. Equations 1 and 2 (taken from [3]) shows how MMU

can be computed assuming a time based scheduling algorithm
where pEq and rkq are the mutator and garbage collector time
quanta respectively. A time quantum is the smallest amount of non-
preemptive execution time that is guaranteed.

MMU s monut$v p qxw�y{z}|~e���i���>�Q�0�mon (1)

4 2005/9/29

mon
is the time window for which MMU is calculated and � is the

remaining partial mutator quantum, defined in Equation 2.� v��R�(�U���4��mono� sCp^q � rkq t wD� monp^q � rkqK� � rkqi� (2)

If the mutator, prior to runtime, is guaranteed that it will always
get a certain fraction of the CPU over a small window of timesCp^q � rkq t , then static scheduling analysis [19, 16] can determine
whether or not the system is feasible.

3. Mutator Statistics for Real-Time Collection
Now we return to the discussion of what statisticall properties of
the mutator program that a real-time collector must have access to.
While in this paper we focus primarily on the Metronome real-time
collector [3], all tracing, real-time collectors function similarly, in
the sense that the following statistics are necessary:

Maximum live storage: We denote as maxlive the maximum stor-
age live at any point during the application’s execution. In other
words, the program cannot run in fewer than maxlive bytes,
given a perfect, continuously-operating garbage collector. De-
termining maxlive statically is undecidable. Even a dynamic ap-
proach to determining maxlive [29, 6] is computationally inten-
sive, as the garbage collector must be run when any stack or
heap cell is modified.

In spite of the above considerations, it is generally assumed
that developers and those who execute Java applications know
maxlive for a given application. This follows from the fact that
all programs (including those written in languages with explicit
deallocation) execute with a specified or nominal heap size.
Maxlive is needed to put an upper bound on the amount of work
that the collector may need to perform during a collection cycle.
As mentioned in Section 2.2 the work done by the collector is
proportional to the amount of live memory

Pointer density: The mark phase of a precise garbage-collection
algorithm involves touching all live objects. Liveness is deter-
mined by tracing references from a program’s live roots, such
as its stack and static variables. Each object visited by the mark
phase offers pointers that, if not null, point to objects now as-
sumed to be live. The cost of the marking phase is thus depen-
dent on the number of non-null references that can be discov-
ered while marking live objects.

Fortunately, in languages like Java, reference fields are ex-
plicitly declared. The pointer density of each object type can
thus be determined, if all object types are known a priori. Dy-
namic, worst-case pointer density can thus be bounded by as-
suming the object with worst-case pointer density dominates.
While a better bound on pointer density can limit the work of a
tracing collector, no real harm comes from overestimating this
statistic, even to the point of assuming that every field of every
object is a non-null reference.

MMAR: A real-time collector cannot suspend a mutator indefi-
nitely. Thus, the work of a traditional collection cycle is inter-
leaved with the mutator’s execution. In rate-based collectors
such as Metronome, a predetermined fraction of the CPU is
devoted to collection, so that context may switch between the
mutator and the collector many times before a collection cycle
is truly complete. In the span of a collection cycle, the muta-
tor runs periodically and can thus continue to allocate objects.
Some of those objects may become dead during the cycle. Once
dead, such objects do not count toward maxlive, but the real-
time collectors cannot collect them in the current cycle. Such
objects are called “floating garbage” in the literature.

The extent of floating garbage must be known, so that a real-
time collector can specify sufficient storage beyond maxlive

so as not to run out of storage during a collection cycle. A
bound on floating garbage is computed as the product of the
mutator’s execution time during an entire collection cycle and
the maximum rate at which the mutator can allocate storage
(MMAR). That product is influenced by the mutator in terms of
its MMAR, but the fraction of time given to the mutator is the
key parameter used by the collector to guarantee pacing with
the mutator.

Underestimating the MMAR could cause the program to
fail because of insufficient storage budgeted for the collec-
tion cycle—a situation unacceptable for real-time applications.
Overestimating the rate will cause the program’s required heap
size to increase, which may be tolerable, but the fraction of time
given to the mutator will decrease, which may make the real-
time program unschedulable.3

Thus, MMAR is the most influential statistic but also the one
most difficult for a developer to estimate. In this paper we present
static analysis that accurately bounds the MMAR. This analysis
assumes that the whole program is available. While it’s true that
Java dynamically loads classes, real-time allocators need a whole-
program conservative estimate of the MMAR. Short of a guess, the
whole program must be available to a human or to our analysis to
make the estimate possible. We further assume that only classes
that are known to our system can be instantiated using reflection.

4. Static Determination of Allocation Rates
A common technique for analyzing a static property of a program
is to formulate the problem as a data flow framework [23]. To this
end a control flow graph representing the program is constructed.
Below we show an example C program, and in Figure 3 we show
the control flow graphs for the two methods.

int fact(int x) �
if (x � 2)

return 1;
x = x * fact(x � 1);
return x;�

int main(int argc, char **argv) �
int x = argc, y = 0;
if (x == y)

return 1;
y = fact(x);
x = x � y;
return x;�
Formally, a data flow framework is expressed as a triple �8� vs��K� �/�Z� � t where ��� is the data flow graph for procedure (or

method) � ,
�

is the meet lattice, and � is the set of transfer
functions.- � � v sC� � �M� � �M� � �M� � t- �gv sC ��¡¢�M£¢��¤L��¥$t- �§¦ ��¨Y© �gª«� !�d� is the set of nodes in the graph and

� � is the set of control-
flow edges. For our purposes, each node ¬§­j� � represents one
instruction and each edge sA¬b® � ¬�¯ t ­ � � represents a possible
execution path of the procedure. In addition, � � is augmented with
start and exit nodes,

� � and
� � , and an edge s � � �M� � t .

The meet lattice,
�

, is a quintuple consisting of the following:
the set of elements, , forming the domain of the problem; top,

¡
,

3 in the sense that rate-monotonic analysis cannot guarantee that all dead-
lines are met.

5 2005/9/29

return 1

return x

x = x * fact (x−1)

if (x<2)

START

EXIT

EXIT

START

int x = argc

int y = 0

if (x == y)

return 1 y = fact (x)

x = x + y

return x

Figure 3.
S*��������3��� �����
+'	�����5
	�(���Qh4 (&°1)���	�Q��&$ ��C±Q�5�����������/��
E1)�� �� �'	�e��²��	�^3	� �o3"�� ��������E%

and bottom,
£

, representing the best and worst possible solutions
to the problem; a reflexive partial order operator,

¤
, which is used

to compare different solutions to each other; and the meet operator,¥
, which combines solutions.

The last element of the �8� triple is the set of transfer functions,� . A transfer function
¨

maps the combined input to a node, ¬b³ ´C¬ ,
to its output ¬b³ µ�¶+· .
4.1 Solutions using Data Flow Frameworks
As described above, we aim to compute the maximum rate at which
a mutator consumes memory. Our framework uses a window that
essentially slides over a program’s instructions, and we compute the
MMAR seen in that window. The window could be expressed using
units of time, but for our purposes it was more convenient to size
the window with respect to a program’s Java bytecode instructions.
While it is true that those instructions take varying time, conversion
to time is still possible on average. For now we will make the
conservative estimate that each byte code instruction executes in
one clock cycle. This assumption is safe because we are assuming
that instructions execute faster then they actually do.

For the purposes of this framework, a program’s instructions
fall into two categories: those that allocate storage and those that
do not. This binary categorization suggests an abstraction in which
each instruction is represented by a bit: 1 for allocation and 0 for
non-allocation. The relationship is slightly more complicated since
we must account for the size of each allocation. At this point in our
paper, we assume that all allocations are of unit size. We take into
account actual object size in Section 4.3.

Based on the above assumptions, a window of instructions is
represented by a bit-vector, where each bit represents one instruc-
tion; we adopt the convention that the most significant (leftmost)
bit represents the most recent instruction.

4.1.1 Naı̈ve Framework
We begin with a simple framework that explains our approach,
but which provides unnecessarily conservative results on Java pro-
grams because of the ¸"¹5º$»5»5»�¼"½�¸4¼(¾ idiom, as we explain below.
In this naı̈ve framework, the meet lattice

�
is defined as follows,

where ¿ is the size of the window:- v � �4��À !�Á- ¡Âv§ÃC�4�/�4���4� ³�³�³ �M�Ä Å�Æ ÇÁ È- £Âv§Ã�À"��À"��À"� ³�³�³ ��ÀÄ Å�Æ ÇÁ È

new

<0,0,0,0>

<1,0,0,0><1,0,0,0>

<0,1,0,0>

<0,1,0,0>
<0,0,1,0>

<0,0,1,0>

<0,0,0,1>

dup

astore_1

aload_2

invokespecial

<1,0,0,0>

<0,1,1,1>

Figure 4. É =��Ê�� ������� 4��h4 �&«�����	3	=Ë����3"�����������/����I 4�(�f �1xÌ���]���Í �¸5¹5º$»5»"»/¼"½�¸4¼�¾ B � ���±��<Î��	��
 ¸5¹5º$»"»5»/¼"½�¸�¼(¾D»5»5»�Ï4Ð(Ñ4½5Ò"Ò�º B � ���±��MÓ�� ������5IJ�x�Q�	���2��
5�5���d�� Y�M²�����3���I ���ÔM=�����
+� IJ�(�[�� �
	�xÎ�����
x�� �
	�[IJ�Ï4Ð(Ñ4½5Ò"Ò�º B � ���±���
D�W����35������I]���� ��Ó�% É ="I �E�����2Õ�� �i�2&GIJ��
5 �&Ö'	�	������Ô�����/�"�VIJ� �?&GI ��=<��� � �������I 4�(�H&�=����Ê'(��IJ�(�g��=��<����× Ø]��U1:��������&$ 	�C±? �1Ù �����MI ��ZÚ�%*Û5%*Û5N4I*�G��="I �$��²��	�^3	� �"
(��=��PÕ����	�5�(�
	�d����3" 	�J���b��=	�W���G�� ���Ô�/����'��MI]��>�	� � �������I ��(�$I*��I ���i&ZI*��
5 (&�
�&�=����G ��	� �Z 4���k�	� � �������I 4�G���	��W����� � �^ �����'	�e��� 4�(�H�	���o��²�����'��MI ��83�����=�%
- ¥ is logical bitwise or of the input bit-vectors-¢Ü ¤°Ý holds if and only if Ü ¥2ÝZv Ü

Thus,
¡

is a window in which none of the instructions allocates
memory;

£
is a window in which all instructions allocate memory.

The meet operator
¥

summarizes the allocation windows of its
inputs, and bitwise or is a valid meet operator for a monotone
framework.

For example, the bit-vectors
ÃC�4�M����À"�M� È and

ÃC�4��À"�/�4��� È inform
us that on their respective paths through � � an allocation has
occurred three and two instructions ago, respectively. Using the
above meet,

ÃC���M�4��À��M� È ¥gÃC�4��À"�M����� È vÞÃC�4��À"��À"�/� È . This resulting
vector assumes that allocations have occurred both three and two
instructions ago. Clearly all information has been retained and thus
the result can never be better than the input vectors. However, as
we shall see, this meet function is overly conservative.

Each transfer function
¨ ­ß� must update the solution at a

given node, ¬ , so that the output of the node encompasses the
instruction represented by the node. This is accomplished by a
simple right shift of the solution bit-vector: If ¬ represents an
allocation then a 1 is shifted in; if ¬ is a non-allocation then a 0
is shifted in. The least recent bit (rightmost in the bit-vector) is
shifted out and lost.

The naı̈ve framework works well on simple Java programs,
yielding allocation rates of some 2–3 allocations per 16-instruction
window. However, when we turned to real benchmarks (such asà"á�â5â

), we found overly conservative solutions from using logical
bitwise or as the meet operator. Our framework computed some
15 allocations per 16-instruction window. We discovered that this
high allocation rate was caused by blocks of code similar to the one
shown in Figure 4.

6 2005/9/29

The fact that our meet operator retains all information from its
input vectors gives us an artificially high allocation rate in certain
cases. The example in Figure 4 may seem contrived, but it is exactly
what happens within a Java try-catch block, or within a monitor.
We need a meet function the result of which is no better than any
of its input vectors, without being overly conservative. By looking
at the example in Figure 4, it is apparent that one of the problems
is that the meet function, at the last node, increases the number of
allocations in the solution. It seems reasonable to restrict the meet
function so that its result cannot contain more allocations than any
of its input vectors.

When all incoming vectors only contain one allocation this is
simple enough. The meet will just return the incoming solution
that has seen an allocation most recently. But how should the meet
function react when one or more of its input vectors have more than
one allocation? Clearly, the result should contain the same number
of allocations as the vector with the most allocations, but where
should they be placed? For example, say we need

ÃC�4��À����4�M����À È ¥ÃC�4�/�4��À"��À"��� È . One idea is to set the most significant bits in the
result:

ÃC�4��À��M�4������À È ¥cÃC�4���4��À"��À"�/� È vãÃ�À���À"�M�����4�M� È . This can be
seen as better than logical bitwise or because it does not increase
the number of allocations.

Nonetheless, this meet function produces a solution that reflects
that the last instruction it encountered was an allocation when
none of its input vectors reflected that fact. Also, it violates the
important meet property of idempotency Ü ¥ Ü v Ü (when Ü has
at least one allocation but none in the most recent instruction). A
better idea is to have the meet place allocations in the positions
of the most significant set bits in its input vectors:

ÃC�4��À"���4�/�4��À È ¥ÃC�4�/�4��À"��À"��� È väÃC����À"��À��M�4��� È . In other words, note the number of
allocations ¬ in the input vector with the most allocations, use
the bitwise-or meet, then keep only the ¬ leftmost ones in the
result. This limited-bit-or meet will never increase the number of
allocations and it will never place an allocation at a position that
all of its input vectors regard as a non-allocation. Unfortunately, it
leads to a sub-optimal reflexive partial order, as seen in the next
section.

4.1.2 Better Framework
Thus far, we have been constructing the framework’s meet lattice
by defining the meet function directly and defining the reflexive
partial order in terms of it: Ü ¤ÊÝ if and only if Ü ¥>ÝGv Ü . Each meet
function we proposed gave results that were no “better” than the
inputs in an obvious way, but it was never clear that we had found
the least conservative reflexive partial order that works for our
application. Now we construct a better framework by motivating
a reflexive partial order directly from our application and using it
to find a better meet function.

Essentially, since we want to find the tightest possible bound on
allocation rate in every given window, we want Ü ¤ßÝ

to be true
when Ü has at least as many allocations as

Ý
and will no matter

what sequence of transfer functions is applied to both Ü and
Ý
; put

another way,
Ý

will give at least as good a result as Ü regardless
of the future path through the program graph. (Remember that in
our bit-vector framework there are only two transfer functions:

¨�å
,

which shifts in a 0 at a non-allocating node, and
¨ ® , which shifts

in a 1 at an allocating node.) For example, using the limited-bit-or
meet above, Ã�À"�/�4��À È ¥?ÃC����À"�M� È v§Ã�À���À"��� ÈdævçÃ�À"�/�4��À Èand so

Ã�À"�M����À Èjæ¤èÃC����À"��� È . But we want
Ã�À����4��À È ¤èÃC�4��À"�/� Èsince

Ã�À��M�4��À È has more allocations and will never have fewer
no matter what sequence of transfer functions is applied to both.
Applying

¨ ® and then
¨ å

to both, for example, will result in
ÃC�4��À���À Èand

ÃC�4��À���� È . To see that this holds for any sequence of transfer

functions, notice that every prefix of
Ã�À"�/�4��À È has at least as many

allocations as the equal-length prefix of
ÃC����À"��� È . So our application

motivates the following definition, where Ü�é denotes the ´ th bit ofÜ :

DEFINITION 1. Ü ¤§Ý if and only if for all
À2ê ´ ê ¿ , the ´ -bit

prefix of Ü has at least as many ones as the ´ -bit prefix of
Ý
, i.e.,ë éì�í ® Ü ìLî ë éì�í ® Ý ì .

This reflexive partial order leads to the following meet function,
which calculates ï v Ü ¥RÝ from inputs Ü and

Ý
:

for ðuñÊò to ó do

if ô^õ�öE÷ ë éì�í ®�ø ì�ù ë éì�í ®�ú ì�ûýü ë éAþ ®ì�í ®�ÿ ì thenÿ é ñ°ò
elseÿ é ñ��
The if statement assigns a 1 to ï é only when it is necessary to

prevent ï æ¤ Ü or ï æ¤�Ý according to definition 1. Induction can be
used to prove that this meet function gives the best possible result
while satisfying Ü ¤ÊÝ���� Ü ¥HÝZv Ü for all Ü and

Ý
; see Section

4.3.2 for a more general proof. So the overall problem motivates
the transfer functions in an obvious way, those transfer functions
motivate a reflexive partial order, and a meet function is constructed
to impose that reflexive partial order.

Perhaps a more intuitive way to compute this meet function
is as follows: We scan the bit-vectors Ü and

Ý
from left to right

(most recent to least recent). At each position ´ , we compute the
corresponding bit of ï by taking the bitwise or of Ü�é and

Ý é . If the
result ï é vËÀ , then we reset the leftmost non-zero bit of Ü and of

Ý
.

The intuition is that the resulting
À

in ï covers the next allocation
in Ü and in

Ý
, whether it comes at position ´ or later.

For example,ÃC�4��À����4�M����À È ¥?ÃC�4������À"��À��M� È v§ÃC�4��À����4��À���� ÈThe result reflects the fact that the most recent allocation was en-
countered two instructions ago, and that the second most recent
was encountered four instructions ago. Our experiments were con-
ducted using this framework, but accounting properly for object
size as described in Section 4.3.

4.2 Framework Evaluation
Recall that in the introduction to this section we presented the in-
traprocedural data flow graph for an example C program (Figure 3).
Forming an interprocedural solution from this graph is conceptu-
ally trivial. As show in Figure 5 the only changes that are made to
the intraprocedural graph is to connect method calls to the actual
flow graph for the called method. If procedure A calls procedure
B, then creating the interprocedural graph from the intraprocedural
graph involves connecting the call node in A with the start node
in B, and the exit node in B with the successors of the call node
in A. However, it would be prohibitively costly for any program of
size to reevaluate procedure B every time a node, anywhere in the
program, that calls B is encountered. Furthermore, reevaluating B
implies that all procedures called by B would also have to be reeval-
uated, and so forth. In our detailed description of the algorithm we
use to evaluate our interprocedural framework we show how we get
around this problem.

We use the following notation, based on the work by Reps
et al. [27], to specify our interprocedural data flow framework
formally:- � , v sC� , �M� , t-�� , v the set of all procedures � represented in � ,

7 2005/9/29

return 1

return x

x = x * fact (x−1)

if (x<2)

START

EXIT

EXIT

START

int x = argc

int y = 0

if (x == y)

return 1 y = fact (x)

x = x + y

return x

Figure 5.
S*���/���C3"�� �����
+'	�W�	��
	���/�dh4 �& 1)���	����&$ 	��±d�5�����������/��
E1)�� �� �'	�e��²��	�^3	� �o3"�� ��������61)�� 4���4I �4'	���
	�%

- � , v����
���� � �- �o,Zv@� å �@� ®- � å v����
���� � å� is the set of intraprocedural control-flow edges- � ® v����
�� � � ®� is the set of procedure call and procedure return

edges.

We also define the functions:- calledBy s*� � � , t$v ��� where �����°� , is the set of call nodes
that call procedure �- calcIntra s*� t calculates the intraprocedural solution for proce-
dure � as given by the framework of Section 4.1.2.

The basic algorithm for calculating the interprocedural MMAR
is as follows:

Interprocedural Data Flow
Initialize

1 for each ����� , do
2 calcIntra � ���

Update
3 while there are changes in � , do
4 for each ��� � , do
5 ! �#" calledBy � � ù � , �
6 $ ��% ð'& " ()
�*,+ & % ð'&
7 calcIntra � �-�
8 for all &.��! � do
9 & % /1032 "�4 �

In the above algorithm ¬b³ ´C¬ refers to the combined input to node¬ , ¬b³ µ�¶+· refers to the output of node ¬ , and
� � and

� � refer to the
start and exit nodes of procedure � , as mentioned in Section 4. The
most important steps of the algorithm are lines 6 and 9. At line
6 all the calls made to procedure � are combined into one using
the meet operator. The reason for doing this is twofold. First, it
reduces the computational complexity because several procedure
calls are merged, reducing the number of times calcIntra s*� t needs
to be called. Also, if � makes any procedure calls, then for each data
flow solution created by calcIntra s*� t , each procedure called by �
would have to be evaluated. Second, it reduces space complexity.
To see this, consider that fact that each data flow solution resulting

from a call to calcIntra s*� t is contained in � � , and thus � � must be
stored from iteration to iteration. By combining all procedure calls
to � we never have to keep more that one copy of � � at any given
time.

The price we pay for the decrease in computational and space
complexity is that our interprocedural analysis will be more conser-
vative than it otherwise would. However, our results in Section 6
confirm that we obtain reasonable solutions with this approxima-
tion.

4.3 Accounting for Allocation Size
We now revisit the issue of allocation size, focusing first on scalar
objects and then on arrays. While most programs allocate objects
of varying size, we have observed that most allocations are small—
on the order of 12 bytes. Because object size depends on object
type in Java, most programs exhibit a locality of size, meaning
that object sizes that have been frequently allocated in the past are
likely to be allocated in the future [3]. However, we are obligated
to compute the MMAR, and this cannot be based on average or
expected behavior.

In most cases, determining the size of an allocated object stati-
cally is relatively straightforward. An object’s storage can be com-
puted as the sum of the sizes of all the fields in the object plus the
object’s header. Our results were obtained using Sun’s JDK Java
execution environment, in which objects have a header of 8 bytes
and in which almost all fields are 4 bytes. The only exceptions are
fields of type 53687�9�Ò á or Ò�6�Ñ�: which occupy 8 bytes. We recog-
nize that individual Java implementations may vary, however, we
feel that these are reasonable assumptions because all Java imple-
mentations do something very similar to this. At an allocation, we
compute each object’s size using the Java reflection package.

4.3.1 Statically-Bounded Array Allocations
The size of some arrays can be statically bounded by a constant
in Java, but such an analysis is slightly complicated. Consider the
following example, where ; is some boolean condition that is not
known statically:

Array Allocation
1 int size = 10;
2 if (<)
3 size = 100;
4 MyObj[] a = new MyObj[size];

Static determination of the size of statically-allocated arrays is
itself a data flow problem. Typically, constant propagation is used
for this purpose. However, for our purposes we require a bound
on array size but are not interested in the actual array size; accord-
ingly, we implemented an intraprocedural range propagation analy-
sis instead, which tracks value ranges for variables even when they
are nonconstant [13]. When the number of elements of the array is
known, determining its size is simply a matter of multiplying the
number of elements with the size of the array type. In Java, arrays
of objects are in fact arrays of reference type, so for object arrays
we do not have to worry about the size of the constituent objects
when computing the memory footprint of an array—each array el-
ement is of pointer size.

We have implemented such an analysis for bounding the size
of array allocations when possible, and we have incorporated this
analysis into our static analysis for the MMAR. Additional de-
tails of our range propagation implementation can be found in Ap-
pendix A. In Section 4.3.3, we discuss array allocations that we
cannot statically bound. For now, we assume we have a static bound
on each allocation, whether of object or array type.

8 2005/9/29

4.3.2 A Data Flow Framework with Allocation Size
As we must account for the size of what is being allocated, our
meet lattice

�
and set of transfer functions � must be modified.

Modification of the transfer function is straightforward: instead of
shifting in a 1 for an allocation, we shift in the actual size of the
object being allocated. The modification of

�
is shown below, and

an example is given in Figure 6:- v � �4��À"�>=�� ³�³�³M_ ! Á where _ is the maximum number of
bytes that the allocator can allocate at one time- ¡Âv§ÃC�4�/�4���4� ³�³�³ �M�Ä Å�Æ ÇÁ È- £Âv§Ã _ � _ � _ � ³�³�³ � _Ä Å�Æ ÇÁ È- ¥ is illustrated in Figure 6 and formally defined below-oÜ ¤ÊÝ holds if and only if Ü ¥[ÝZv Ü
In Section 4.1.2, we defined the meet function in terms of a

left-to-right scan of the input vectors. When all allocations were
equal we could simply align the most recent allocations in each
vector, then the second most recent, and so on. Figure 6 shows
how the meet function works when all allocations are not equal.
Step 1 shows the original input vectors. These are never modified—
steps 2–5 work with copies of the original vectors.

At step 2, in Figure 6, 8 bytes are moved from the most recent
allocation of the top vector to compensate for the fact that the
bottom vector has an allocation of 8 bytes occurring earlier. The
resulting vector of the meet can now be filled up to this point. At
step 3 both vectors have an allocation at the same position, but now
the allocation of the top vector is 8 bytes smaller. Consequently,
we move bytes from earlier (further to the right) allocations to
compensate, and we can update the resulting vector. At step 4,
both allocations occur at the same position and they are equal
in magnitude, the result vector is updated accordingly. Finally, at
step 5, the top vector has an allocation but the bottom vector has
no more allocations. From here on, had the top vector had more
allocations left, the bottom vector can be ignored and the result
vector is simply filled with the allocations in the top vector.

This “borrowing” meet algorithm is intuitive, but using a more
formal algorithm makes it easier to show that it is the best possible
meet. First we define the reflexive partial order for the allocation-
size framework similarly to the one in the bit-vector framework
from Section 4.1.2, but instead of looking at number of allocations
in a given window, we look at total allocation size. So we wantÜ ¤ Ý

to be true when Ü has at least as large a total allocation
size as

Ý
and will no matter what sequence of transfer functions is

applied to both Ü and
Ý
, so that

Ý
will give at least as good a result

as Ü regardless of the future path through the program graph. Thus
the following definition, where Ü é denotes the ´ th entry of Ü :

DEFINITION 2. Ü ¤ÊÝ if and only if for all
ÀLê ´ ê ¿ , the ´ -entry

prefix of Ü has at least as great an allocation total as the ´ -entry
prefix of

Ý
, i.e.,

ë éì�í ® Ü ì î ë éì�í ® Ý ì .
So, for example,

Ã@?��A?4��ÀCB��>?������A?��ED È ¤jÃC�4�>D��A?��ED��>?��>D��>? È . This
reflexive partial order leads to the following meet function, which
calculates ï v Ü ¥[Ý from inputs Ü and

Ý
:

for ð�ñÊò to ó doÿ é ñýô^õ�ö ÷ ë éì�í ®�ø ì	ù ë éì�í ®�ú ì û � ë éCþ ®ì�í ®�ÿ ì
At step ´ the assignment statement assigns to ï é the smallest

integer that is necessary to prevent ï æ¤ Ü or ï æ¤\Ý
according to

definition 2. Induction can be used to prove that this meet function

<...>

1

2

3

4

< 0, 8, 16, 0, 4, 0 >
< 0, 0, 16, 4, 8, 4 >

< 0, 8, 16, 0, 4, 0 >
< 0, 8, ...>

< 0, 8, 8, 4, 8, 4 >

< 0, 8, 16, 0, 4, 4 >
< 0, 8, 16, 0, 4, 0 >
< 0, 8, 16, ...>

< 0, 8, 16, 0, 4, 4 >
< 0, 8, 16, 0, 4, 0 >

<0, 8, 16, 0, 4, 4>
<0, 8, 16, 0, 4, 0>
<0, 8, 16, 0, 4, 4>

< 0, 8, 16, 0, 4,... >

5

Figure 6.
li 4�^3	'���IJ�(�[�Q�����k&K=����o������ �'	����I*�(�o1V 	�e B/F �����K�	� � ����(Ô��I 4�^��I F���%

is the only one possible that, for all Ü and
Ý
, satisfies Ü ¥8Ý�¤ Ü andÜ ¥YÝR¤çÝ

and for which no G exists such that G ¤ Ü , G ¤§Ý andG æ¤ Ü ¥[Ý :First, say that the meet algorithm is on the last, ¿ th, step; ï ®
through ï Á þ ® have been calculated in some way. If ï Á were as-

signed a value less than
�R��� ÷ ë Áì�í ® Ü ì � ë Áì�í ® Ý ì�û � ë Á þ ®ì�í ® ï ì ,

then it would be true that�R����H ÁI ì�í ® Ü ì �
ÁI ì�í ® Ý ì8JLK

ÁI ì�í ® ï ì
and so either ï æ¤ Ü or ï æ¤ Ý

by the above definition of
¤

.
On the other hand, say ï Á were assigned a value greater than�R��� ÷ ë Áì�í ® Ü ì � ë Áì�í ® Ý ì û � ë Á þ ®ì�í ® ï ì . Then letting G ì v ï ì
for

ÀýêNM°ê ¿ �6À
and G Á v �R��� ÷ ë Áì�í ® Ü ì � ë Áì�í ® Ý ì û �ë Á þ ®ì�í ® ï ì will give a G such that G ¤ Ü , G ¤ Ý

and G æ¤ ï , this

last because G ÁPO ï Á and so
ë Áì�í ® G ì æî ë Áì�í ® ï ì . Therefore�R��� ÷ ë Áì�í ® Ü ì � ë Áì�í ® Ý ì û � ë Á þ ®ì�í ® ï ì is the correct value to

assign to ï Á no matter what ï ® through ï Á þ ® are.
Now assume that the meet algorithm is on the ´ th step; ï ®

through ï éAþ ® have been calculated in some way and ï é � ® throughï Á will be calculated according to the above meet algorithm. Ifï é were assigned a value less than
�R��� ÷ ë éì�í ® Ü ì � ë éì�í ® Ý ì û �

9 2005/9/29

ë éAþ ®ì�í ® ï ì , then it would be true that�R�(�QH éI ì�í ® Ü ì �
éI ì�í ® Ý ì8JLK

éI ì�í ® ï ì
and so either ï æ¤ Ü or ï æ¤ Ý

by the above definition of
¤

.
On the other hand, say ï é were assigned a value greater than�R��� ÷ ë éì�í ® Ü ì � ë éì�í ® Ý ì û � ë éCþ ®ì�í ® ï ì . Then letting G ì v ï ì forÀ¢êRM2ê ´ �°À and G é vj�R�(� ÷ ë éì�í ® Ü ì � ë éì�í ® Ý ì û � ë éAþ ®ì�í ® ï ì
and assigning values to G é � ® through G Á according to the algo-
rithm above will give a G such that G ¤ Ü , G ¤jÝ and G æ¤ ï , this
last because G é O ï é and so

ë éì�í ® G ì æî ë éì�í ® ï ì . (In fact, it will

be the case that ïTSUG .) Therefore
�R��� ÷ ë éì�í ® Ü ì � ë éì�í ® Ý ì�û �ë éAþ ®ì�í ® ï ì is the correct value to assign to ï é no matter what ï ®

through ï éCþ ® are. It follows by induction on ´ that the above meet
algorithm gives the best possible result that satisfies Ü ¥[ÝQ¤ Ü andÜ ¥RÝQ¤ÊÝ .
4.3.3 Unbounded Arrays and Arraylets
Bacon et al. [3] suggest the use of arraylets to solve the problem
that large objects cause for real-time garbage collectors. The idea
is to represent large arrays as a sequence of arraylets where each
arraylet, except for the last, is of a constant size, r . Siebert [30]
uses a similar idea and represents large arrays as a tree structure of
fixed-size blocks.

As mentioned in Section 4.1, thus far we have assumed that each
virtual machine instruction is executed in one clock cycle. This is
not the case for many instructions. In fact, instructions that allocate
memory take time proportional to the size of the allocation. When
any object in Java is allocated, first the amount of memory needed
is reserved from the heap. Then all fields are initialized to zeroes
(typically 4 bytes at a time on a 32-bit processor). This means that
each allocation instruction is followed by � number of assignments,
where � is the number of bytes being allocated divided by 4.
However, the clock cycle assumption is valid because assuming
that all instructions take one clock cycle to execute cannot lower
the upper bound we are computing—in fact, it might raise it.

To maintain the generality of this implementation we will not
include the initialization instructions for objects other than arrays
in our analysis. We will include the initialization instructions for
array allocations in order for us to be able to compute an upper
bound on the allocation rate resulting from these allocations. Using
the idea of arraylets, we assume that the size of all array allocations
of (statically) unknown size is some multiple of the arraylet size,r , reported by Bacon et al. [3] as r vV=

KB. If we assume that
our window size, ¿ , is smaller than ¯AWYXZ X then we can bound the
allocation rate behavior of all array allocations of unknown size.

Figure 7 shows how allocations of dynamic arrays can be rep-
resented. Directly following the allocation of the array, we assume
that one arraylet has been allocated. We can do this since we are
assuming that each unknown-size array allocation is allocated as
arraylets and that each arraylet is allocated and initialized before
the next arraylet is allocated. As aforementioned, ¿ O ¯AWYXZ X . This
means that when the next arraylet is allocated, the allocation for the
first one will have fallen out of the window. The key point here is
that the number of arraylets that are allocated will have no effect on
the overall allocation rate.

Following the array allocation instruction we insert a dummy
node. This node accounts for the fact that the last arraylet to be
allocated may not be large enough for its initialization instructions
to push that allocation out of the window. The range of [, the
number of elements in the last arraylet, that we must account for

...

anewarray

dummy

< ?, ?. . . , ? >

< C, ?. . . , ? >

< 0, (r1 * 4), 0,, 0 >

< 0, 0, (r2 * 4), 0,, 0 >

< 0, 0,, (rN * 4) >

Figure 7. \ �Z�"�C�����Z��� � �������I 4��
����P�W��3"�����/��������
^IJ�P��=��D�� ������� ���h4 �&������3	=�%�Î>] ^5Íi����3��W���/�������Z�	���HIJ�(�)����'�����I 4��% Ó
is
� O [ê � , where � v ¿ � À

. Because we do not know the
size of [, only its range, we must account for all values of [, with
its subsequent initialization instructions. This is the output from the
dummy node in Figure 7. Taking the meet of all the output vectors
from the dummy node gives us the vector

ÃC�4�>?4� ³�³�³ �_? È .We have placed an upper bound on the MMAR that can result
from the allocation of a statically-unbounded array allocation. This
bound is based on the assumption that the allocator will allocate
arrays as a sequence of fixed-size arraylets. Similarly, if the alloca-
tor allocates large objects as a sequence of smaller allocations, this
technique can be used to estimate the allocation rate for those al-
locations, assuming that we are including the initialization instruc-
tions. In this case, and in the case of statically-allocated arrays, [
will be known and thus the output from the dummy node will be
one of the output vectors in Figure 7 rather than the meet of all of
them.

If the allocator does not handle statically-unbounded array al-
locations as arraylets, there is little we can do to compute a good
upper bound on the MMAR. We would be forced to assume thatr v _ in Figure 7. Since the array actually allocated may be
small, we would still need to use the dummy node and meet all of
its output vectors.

4.4 Analysis of the Framework
To guarantee that our data flow framework converges we must show
our framework is monotone:sa` ¨ ­U� t sa` � �cb�t � ¤dbË��ª ¨ s � t>¤ ¨ s b�t
A node’s transfer function shifts in the amount of memory allocated
at each instruction (0 for a non-allocating instruction). The shifts
occur at the right hand side of a bit-vector, while the comparison
(
¤

) is based on the leftmost bits scanning to the right. Thus, no¨ ­x� can output a better solution given a worse input.
We must show our meet operator satisfies the following rules

for all Ü �/Ý ­Y :

1. Ü ¥ Ü v Ü
2. Ü ¥2ÝQ¤ Ü
3. Ü ¥2ÝQ¤ÊÝ
4. Ü ¥Y¡Âv Ü

10 2005/9/29

5. Ü ¥x£ÂvÂ£
It is easy to see from our meet algorithm that the meet satisfies 1,
4 and 5 (note that Ü é î ¡ é and Ü é êÂ£ é for all Ü and ´). Also, our
meet algorithm was carefully designed to satisfy properties 2 and 3
with our definition of

¤
; see Section 4.3.2.

As a result of the above, a data flow solution will converge such
that the MMAR we compute at any point in a procedure is no lower
than what could be seen on any path arriving at that point.

Thus far, we have a solution that is valid and that is guaranteed
to converge, but at issue still is the quality of our solution relative to
what could ideally be computed on each path separately through a
procedure. If we have a distributive framework, then the (intrapro-
cedural) solution we compute is the best possible static solution to
our problem. In a distributive framework,sa` ¨ ­x� t sa` � �cb�t ¨ s � ¥eb�t$v ¨ s � t�¥ ¨ s b+t
Consider two generic vectors Ü and

Ý
, containing ¬ elements. The

effect of
¨

on Ü and
Ý

is that all values in the vectors are shifted one
step to the right: Ü ¯ takes on the value of Ü ® and so on. Ü) and

Ý)
are shifted out of the window and Ü ® and

Ý ® take on the value that
is shifted in.

Let
¨ s Ü t$v Ü � � ¨ s Ý�tPv�Ý � � Ü � ¥RÝ � v ï � and Ü ¥RÝZv ï . We want

to show that
¨ sAï tRv ï1� to prove distributivity. For a given node,

the semantics of
¨

guarantee that Ü � ® vÖÝ � ® and since Ü ¥ Ü v Ü ,
it follows that Ü � ® väÝ � ® v ïf� ® . Thus ï1� ® is the value shifted in by¨

, which by definition is s ¨ sAï t/t ® . Given any vector
b

, the values
at
b ® �gb) þ ® prior to applying

¨ s b�t will still be in the vector after
applying

¨ s b�t . All
¨ s b+t does is a simple right shift, thus ï1� é v ï éAþ ®

for
À O ´ ê ¬ .

¨ sAï t moves ï éAþ ® to ï é for all
À O ´ ê ¬ , and we

already know that ï1� ® v s ¨ sAï t/t ® . Thus
¨ sAï t$v ï1� , so our framework

is distributive and our solution is no worse than the meet-over-all-
paths (MOP) solution.

A framework is rapid if and only ifsa` Ü ­Y t sa` ¨ ­U� t Ü ¥ ¨ s ¡^tP¤ ¨ s Ü t
It would be ideal if our framework were rapid, because we would
be guaranteed to converge upon a solution more quickly. However,
our framework is not rapid, since each trip around a loop can
shift in another allocation. More precisely, a vector Ü and transfer
function

¨
can be found that violate the above definition: If ¿ vh=

,Ü v Ã _ �M� È and
¨

is the transfer function that shifts in an _
(indicating an allocation of maximum size), thenÜ ¥ ¨ s ¡^tbv§Ã _ �M� È ¥ ¨ s ÃC�4��� È t$vçÃ _ �M� È ¥fÃ _ �M� È v§Ã _ �M� Èbut ¨ s Ü tDv ¨ s Ã _ ��� È t$v§Ã _ � _ Èand

Ã _ �M� Èdæ¤6Ã _ � _ È , so our framework cannot be rapid.
Similarly, it is not fast. A fast framework is one for whichsa` Ü ­x t sa` ¨ ­U� t Ü ¥ ¨ s Ü t>¤ ¨ s ¨ s Ü t/t

But if Ü vãÃC��� _ È and
¨

is the transfer function that shifts in an_ , thenÜ ¥ ¨ s Ü t$v§ÃC�4� _ È ¥ ¨ s ÃC�4� _ È t$vçÃC��� _ È ¥?Ã _ �M� È v§Ã _ �/� Èbut ¨ s ¨ s Ü t/t$v ¨ s ¨ s ÃC��� _ È t/tDv ¨ s Ã _ �M� È t$vçÃ _ � _ Èand
Ã _ �M� Èdæ¤6Ã _ � _ È , so our framework cannot be fast.

5. Multithreaded Environments
Until now we have purposely avoided the issue of multithreaded
mutator programs, which will will be the topic of this section.4

4 Masters Thesis [20]

Multithreading is an important issue because most programs oper-
ating under real-time constraints rely on this capability. However,
threading presents static analysis with the problem of predicting
how context switches can affect properties of the executing pro-
gram.

5.1 Worst-Case Scenario
Below is an example of the instruction trace of three executing
threads. For clarity, we have labeled non-allocation instructions as
“instruction” and allocating instructions as “allocation”. We also
assume that in this particular example each allocation allocates 4
bytes of memory. If context switches can happen at any time during
the execution of the mutator, assuming zero overhead in terms
of instructions executed for the switch, our process for statically
determining a bound on MMAR must consider the following.

Thread A Thread B Thread Ci>ifi i>ifi i>ifi
1 instruction instruction instruction
2 instruction allocation instruction
3 allocation instruction allocation
4 instruction instruction instructioni>ifi i>ifi i>ifi

Analyzed in isolation, each of the example threads has one
allocation in the window of four instructions displayed. Assuming
that this mutator program has no other allocations, our analysis
using a window size of 4 instructions would report an MMAR
of 4 bytes per 4 instructions. However, there are numerous ways
in which the threads can be scheduled to yield an actual MMAR
that is higher than the reported thread ignorant upper bound.

For example: Thread A executes instructions 1 and 2 and then
yields to Thread B. Thread B executes instruction 1 and then yields
to Thread C. Thread C executes instructions 1, 2, and 3 before
yielding to Thread A. Thread A executes instruction 3 and yields
to Thread B. Thread B executes instruction 2, and since there are
no more allocations, the remainder of the execution pattern is of no
concern. In this example, the actual MMAR observed is 12 bytes
per 4 instructions, three times that of the thread-ignorant statically-
computed bound.

If we cannot assume anything about how the threads are sched-
uled then any interleaving of instructions is possible. This means
that a mutator with four threads, each of which performs four con-
secutive allocations at some point during their execution, could per-
form a total of 16 consecutive allocations. In general, if all muta-
tor threads have the same number of consecutive allocations, the
number of consecutive allocations that the mutator could perform
increases by a factor of the number of threads. When considering
allocations of varying size there are even more ways for the thread
scheduler to demonstrate the incorrectness of the thread-ignorant
static analysis. For example, the largest allocation in each thread
could occur one after the other.

5.2 Timing Context Switches
Fortunately, the above discussion is overly pessimistic. For one, we
assumed that context switching between threads is free, meaning
that it has no effect on the MMAR. In actuality, it takes some
amount of time (clock cycles) for the operating system to perform
a context switch. The context of the thread that is being preempted
must be saved and placed in the appropriate queue. The next thread
that is ready to execute (according to some scheduling policy)
must be found and removed from its queue. Finally, the context
of the new thread must be loaded into the CPU. In other words,
some number of non-allocating instructions will be executed by the
operating system between the last instruction of the thread being

11 2005/9/29

 0

 5000

 10000

 15000

 20000

 0 1 2 3 4 5 6 7 8

nr
 o

f c
lo

ck
 c

yc
le

s

t (us)

Figure 8. É =��ý�	'	� B ���Z �1L��� ���±x������� ���H��²�����'�����
°3"���kj��¢ ��?�l % m(ÔAn>aoFH3��� ��������� 	�
switched out, and the first instruction of the thread being switched
in.

These instructions will not allocate any memory on the heap re-
served for the mutator program. However, the CPU time needed
to execute these instructions will be billed to the time quantum of
the mutator. This has the implication that for each instruction ex-
ecuted by the OS during the context switch, a 0 (non-allocating
instruction) is shifted into the allocation vector of our static solu-
tion. It follows that if the context switch execute more instructions
than there are places in the allocation vector, by the time the new
thread starts executing, all allocations from previous threads will
have been shifted out of the window. The examples of Section 5.1
would not apply because whenever a new thread starts executing,
its allocation window will be empty.

Figure 8 graphs the linear relationship between the cost, in
number of clock cycles executed, of a context switch, and the
time required to complete the switch. The worst-case is, of course,· v �

, as in the example shown in Section 5.1. As · increases,
more and more non-allocation instructions are executed during the
context switch.

To measure the time of a context switch, we adapted the work
of Bradford [5]. In particular, we use a C program (quite similar
to Bradford’s) that passes a one byte token back and forth between
two threads using a UNIX pipe. One thread blocks on receiving the
token, the other sends the token and then waits for it to be returned.
This process is repeated a fixed number of times to measure the
total number of context switches per second. The cost of passing the
token back and forth was reported by Bradford as being negligible
compared to the cost of context switching. The code is shown
below:

Thread A
gettimeofday(&start, 0);
for(i=0; i � count; i++) �

if(!send(pipeA, &token))
break;

if(!recv(pipeB, &token))
break;�

gettimeofday(&end, 0);

Thread B
gettimeofday(&start, 0);
for(i=0; i � count; i++) �

if(!recv(pipeA, &token))
break;

if(!send(pipeB, &token))
break;�

gettimeofday(&end, 0);

Using this program we ran an experiment using two threads,
context switching back and forth one million times. On average,

 0

 128

 256

 384

 512

 640

 768

 896

 1024

 1152

 1280

 1408

 1536

 1664

 1792

 1920

 0 1 2 3 4 5 6 7 8

nr
 o

f b
yt

e
co

de
 in

st
ru

ct
io

n

t (us)

10 cycles per byte code
15 cycles per byte code
20 cycles per byte code
25 cycles per byte code
40 cycles per byte code
80 cycles per byte code

175 cycles per byte code

Figure 9. É =��D1A��&D���)�>�	'	� B ���	 �1 B �������� �
	�kIJ�(�)���C'����MI ��(�i��²�����'��/��
35����ji�K 4�o� l % m�Ô_n>aoF83"�� ��������� 	��%bT�����=R� IJ���E�W��3"�����/�����)�Q�E��3"���(I Õ���Q��²5IJ�^'	�ß�	'	� B ���} �1k��� ���±o������� ���E������
	��
R�) [��²�����'����¢�	��� B ������� �
	�EIJ�(�)����'�����I 4�
each context switch took 4.022

j
s. Figure 8 show that this roughly

equivalent to 10000 clock cycles.
The remaining question is: How many Java byte code instruc-

tions can be executed during the context switch? Here we cannot
assume that each instruction takes only one clock cycle, because
the worst case is that each instructions executed during the con-
text switch take as long as possible minimizing the number of in-
structions executed during the switch. A conversion factor between
clock cycles and executed byte code is needed. As aforementioned,
this conversion must be conservative so that the fewest number of
byte code instructions that can be executed during the time of the
context switch is used. Consequently, we need two pieces of infor-
mation. 1) Which is the most expensive Java byte code instruction
and 2) How many clock cycles does this instruction need to exe-
cute.

The literature on this topic agree that the most expensive Java
byte code instructions are the Ð(Ñqp36sr á instructions. However, the
reports on how many clock cycles the invoke instruction needs
to execute varies from 15 [37] to 175 [28]. This large spread is
due to the differences in the hardware used. In his thesis work,
Schoeberl [28] reported that invoke needs 175 clock cycles running
on a Cyclone FPGA, while NanoAmp Solutions report 20 clock
cycles using an ARM CPU [24]. Figure 9 plots the fewest number
of byte code instructions that can execute during a specific time
interval. Each line in the graph was generated using a specific
maximum number of clock cycles per byte code instruction.

As previously mentioned, the experimentally determined con-
text switching time was 4.022

j
s. Figure 9 shows that if the most

expensive byte code instructions need less than 40 clock cycles to
execute, then any allocation in an instruction window of size 256
or less will be shifted out of the window by the instructions ex-
ecuted during the context switch. In Section 6, we will show that,
for the tested SPEC jvm98 benchmarks [31], the MMAR computed
using a window size larger than 256 clock cycles will not be signifi-
cantly less conservative than using the rate computed for a window
of size 256 to estimate larger windows.

This means that if the assumption that the byte code instruc-
tion invoke needs less than 40 clock cycles to execute is valid, then
context switching between threads will not alter the thread ignorant
computed static upper bound for the window sizes we are consid-
ering. At issue then, is whether or not it is reasonable to make this

12 2005/9/29

assumption. In the literature, we have not encountered any cases,
other than the work of Schoeberl [28], where this assumption would
not hold. However, as we already pointed out, the data reported in
his thesis was obtained using a Cyclone FPGA. Therefore, we feel
that the previously mentioned ratios of 15–20 clock cycles per byte
code instruction [37, 24], are more in line with what we can ex-
pect. This puts the number of clock cycles executed by the invoke
instruction well below 40, which is why we feel we can make this
assumption.

Under the assumptions specified in this section, the MMAR of
multithreaded mutator programs can be properly bounded using our
framework. If these assumptions are too constraining for a partic-
ular application, then it may still be possible to bind the MMAR
using safe points (as in Jikes RVM [15]) so that threads are inter-
rupted only at predetermined points. One could also construction an
allocation-aware thread scheduler which would enforce particular
interleavings to optimize the time vs. space tradeoff in the applica-
tion. These avenues have not been explored in this work.

5.3 Sporadic Real-Time Tasks
Many real-time applications require the notion of sporadic schedul-
ing, or another rate-limiting feature for certain tasks. Commonly
used for event-handling tasks, the idea of sporadic scheduling is to
budget only for (and, generally, to permit only) a certain number of
executions over some period. For example, a human operator may
push a button on a real-time system many times a second (or hold
the button down), but the system may choose only to respond to
that button press once per second. Sporadic scheduling can make it
possible to deploy provably feasible task sets that interact with the
statically-unknowable physical world.

In many cases, these tasks can be statically shown never to exe-
cute in parallel (for example, calls to an event handler are serialized
in the RTSJ), and, further, values of sporadic scheduling parameters
can sometimes be determined statically. This additional informa-
tion about the target program can reduce the set of possible thread
interleavings and the frequency with which certain blocks of code
can execute, improving our bound for multithreaded programs.

6. Experiments
In this section we report on the application of our analysis on some
Java benchmarks. While those benchmarks are admittedly not real-
time benchmarks, portions of what they do (audio decoding, expert
shell problem resolution, image rendering, etc.) could arguably be
included in a real-time application. When the real-time commu-
nity accepts real-time garbage collection—we hope this work takes
steps in that direction—then real-time Java programs and bench-
marks should be more plentiful.

We have implemented our static analysis for the MMAR and ar-
ray allocation bounds on top of Clazzer [18], a byte-code manipu-
lation framework in which data flow problems can be explicitly de-
fined and solved. Figure 10 displays our static determination of the
MMAR of benchmarks in the SPEC jvm98 benchmark suite [31].
We used window sizes of 16, 32, 64, 128, 256, and 512 clock cy-
cles. Figure 10 illustrates the problem associated with relatively
small window sizes: When the window size is small each allocation
has a dramatic effect on the overall MMAR. The plot also shows
that as the window size increases, the MMAR decreases, asymptot-
ically approaching a bound of the average allocation rate of the en-
tire program. This is expected; in previous work [21] we presented
a dynamic analysis of a subset of the SPEC jvm98 benchmark suite
demonstrating that the MMAR rapidly approaches the average rate
as the window size increases.

We know that doubling the window size can never increase the
MMAR. Intuitively, we can show this by considering a window of
size ¬ with an MMAR of t) where � is the maximum number of

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

mpegaudio
javac
jess

db
compress

jack
raytrace

Figure 10. `[`u\kvxwAy1z &GIJ��
5 �& ��I F��«ÎC�)���(�MI ���	� � ��Ô:
	���/�����dIJ����
B 4'	��
�Ó�%
bytes allocated in any window of size ¬ in the program. If doubling
the window size increases the MMAR of the program then there
exists an � � such that t) O t +¯) . This implies that � � K = � . It must
also be the case that � � ê{= � because � is the maximum number of
bytes allocated in any window of size ¬ —doubling ¬ cannot more
than double � . We have a contradiction, so doubling the window
size cannot increase the MMAR.

As a consequence, the static upper bound of the MMAR for
a sufficiently large window can be used to approximate an upper
bound for an arbitrarily large window. For example, the results in
Figure 10 suggest that using a window size of 256 as an approxi-
mation is not overly conservative.

Using a window size of 256 clock cycles, we find bounds for
most of our tested benchmarks close to 15–20 bytes allocated per
clock cycle. These bounds are artificially high, because all array
allocations not bounded statically are assumed to be large, as de-
scribed in Section 4.3.3. This means that even a very small array
allocation could have a large effect on the upper bound. Figure 11
shows that the MMAR computed for the benchmark jess, is not rep-
resentative of most procedures executed by the benchmark; most
procedures in jess allocate between 5 and 7 bytes per clock cy-
cle, and many allocate 0 bytes. Array allocations without a static
bound force us to make a highly conservative assumption about
their size—we might expect that procedures allocating such arrays
actually allocate between 5 and 7 bytes per clock cycle, but we
cannot determine that statically. Figure 12 shows that indeed array
allocations are the problem here; when we don’t make pessimistic
assumptions about array size, the allocation rates of all procedures
in jess are bounded by 7.1 bytes per clock cycle.

Figure 11 and Figure 12 give the appearance that many pro-
cedures exhibit fairly high allocation rates. This is misleading be-
cause it does not mean that all procedures with a high MMAR ac-
tually are heavy allocators. The analysis we are performing is in-
terprocedural and thus allocations that occur in procedure � ® might
affect the overall allocation rate of a procedure �i¯ , called by �e® .
This “spill-over” effect is what creates the appearance that many
procedures are heavy allocators. The contrast between Figures 11
and 13 and Figures 12 and 14 makes it clear that the large num-
bers of interprocedurally-analyzed procedures with a high MMAR
is caused by heavy allocation in relatively few procedures.

As expected, the intraprocedural plots (Figures 13 and 14) also
show that the MMAR of the heavily allocating procedures are

13 2005/9/29

 1

 10

 100

-2 0 2 4 6 8 10 12 14 16

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 11. | '	� B ���+ �1b3"�� �����
+'	�����b&GI ��=K�Z��I]����E'	3	3"��� B 4'	��
Q1V 	�F �����b&GI ��=K�Z&ZI*��
5 (&ý��I F��k �1 l m�}�
4�C'	�	�"IJ�(�LI*���/���C3"�� �����
+'	�W�	���	���	� �(��I �'(��IJ�(�¢�"�C�W���	� ������%

 1

 10

 100

-1 0 1 2 3 4 5 6 7 8

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 12. | '	� B ���+ �1b3"�� �����
+'	�����b&GI ��=K�Z��I]����E'	3	3"��� B 4'	��
Q1V 	�F �����b&GI ��=K�Z&ZI*��
5 (&ý��I F��k �1 l m�}�
4�C'	�	�"IJ�(�LI*���/���C3"�� �����
+'	�W�	���	���	� �(��I ��(����'	�dIJ�(�H������=o�"�C�����o��� � ����(�MI ��EI �QÛC} B ���/����%
caused by allocations of arraylets. Figure 13 has a spike at 8 bytes
per clock cycle, which does not appear in Figure 14.

D�~�=���B<v=��8?�DEvh=
KB

v
Arraylet size.

We also implemented a dynamic data-collection mechanism in
a Java Virtual Machine (JVM) to capture the actual MMAR of
our benchmarks in various window sizes. For this, too, we limited
array allocations to a two-kilobyte arraylet size and inserted enough
zero-allocation entries in the window to account for initialization of
the array memory. Figure 15 shows the MMAR observed during a
run of size 100 of each of these benchmarks.

We offer comparisons of our static bounds and dynamically-
collected results in Figures 16 and 17—Figure 16 compares the
static bound to the observed MMAR in the jess benchmark, and
Figure 17 makes the comparison over all benchmarks in the suite.
As the figures demonstrate, we found that our static bounds did
indeed bound the MMAR, and that they were reasonable bounds
for these benchmark runs.

 1

 10

 100

 1000

-2 0 2 4 6 8 10 12

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 13. | '	� B ���� �1b3��� �����
+'	�����}&ZI ��=K���	I]����^'	3	3"��� B 4'	��
Q1V 	�F �����b&ZI ��=Z�G&ZI*��
5 (&<��I F��> �1 l m�}4
��C'	�	�"IJ�(�dIJ�������	3"�� �����
+'	���	���	����� �(�MI �'(��IJ�(�H�"�C�����	� ���)��%

 1

 10

 100

 1000

-1 0 1 2 3 4 5 6

N
um

be
r o

f P
ro

ce
du

re
s

Allocation Rate (bytes per clock cycle)

jess

Figure 14. | '	� B ���� �1b3��� �����
+'	�����}&ZI ��=K���	I]����^'	3	3"��� B 4'	��
Q1V 	�F �����b&ZI ��=Z�G&ZI*��
5 (&<��I F��> �1 l m�}4
��C'	�	�"IJ�(�dIJ�������	3"�� �����
+'	���	���	����� �(�MI �������'	�LI*�(�H������=o�"�C�W���o�	� � �������I ��EI �dÛC} B ���/����%
In particular, with the exception of the mpegaudio and javac

benchmarks, our static bounds on MMAR is within a factor of less
then 2 of the actual, observed MMAR over all tested window sizes.
We bind javac with a factor less then 2.5 for all tested window
sizes and for mpegaudio, our static bound is 5.8 times the observed
rate for a window size of 512. (The static bound on mpegaudio at
smaller window sizes is considerably closer to the observed rate.)

The static bound for mpegaudio deviates more from the ob-
served rate than does the other benchmarks because mpegaudio
allocates one large array up-front and allocates very few objects
during the rest of the run. Thus, the program experiences a “spike”
of allocation, which we correctly bound, though by a factor of 5.8
off of its observed rate for that particular run. Static analysis must
account for any path that could be taken in the code. In this case,
such analysis thinks the allocation could happen in a loop (though it
happens just once) and the steady-state MMAR is 5.8 times higher
than what was seen.

14 2005/9/29

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

jack
jess

compress
javac

db
raytrace

mpegaudio

Figure 15. `2`�\kv�wAy &GIJ��
5 �& �MI F��¢Î�������'��	�5 B �/���J]�����I 4��Ó�%

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

jess bound
jess

Figure 16.
li ��^3��"�VI �� 4�d �1 B �'	��
	��
E�	��
o������'��	� `[`u\kv 1W 	� F ������%

 10

 100

 16 32 64 128 256 512

M
ax

im
um

 a
llo

ca
tio

n
ra

te
 (b

yt
es

 p
er

 c
lo

ck
 c

yc
le

)

Window size

mpegaudio bound
javac bound
jess bound

db bound
compress bound

jack bound
raytrace bound

jack
jess

compress
javac

db
raytrace

mpegaudio

Figure 17.
l� ��^3��"�VI �� ��[�1 B 4'	��
	��
U�	��
Y������'��	� `2`�\kv 1V 	�G�	� �B ������=	���"�C±��QÎ B ���=83	� ��:�/��
o�) "�"����=����WÓ�%

 1

 2

 3

 4

 5

 6

 16 32 64 128 256 512

S
ta

tic
 b

ou
nd

 o
n

al
lo

ca
tio

n
ra

te
 /

ob
se

rv
ed

 ra
te

Window size

mpegaudio
javac
jess

db
raytrace

compress
jack

Figure 18.
li 4�E3��"�VI �) ��R �1 B �'	��
	��
Y����
U������'���� `2`�\kv 1W 	�G�	� �B ������=	�Q�"�C±��QÎC�)�/����I � B �'	��
H ��R�����/���o B �/���J]���
Y���(����Ó�%

Figure 18 shows this comparison over all benchmarks and win-
dow sizes.

7. Related Work
Write me!

Memory studies of benchmarks, footprint bounds (dynamic &
static), etc?

8. Conclusion
We have provided a framework for determining MMAR and have
applied this framework to some Java benchmarks. We have demon-
strated that for our benchmarks, our statically-determined MMAR
is within a constant factor of the observed MMAR. Whether or not
this constant factor constitutes a reasonable upper bound is a sub-
jective issue. The size of this factor will have an effect on the mem-
ory footprint and the MMU [9] of the application. If a closer upper
bound is needed a more careful interprocedural analysis could po-
tentially decrease the magnitude of this factor. In either case, our
statically-computed upper bound offers an improvement over the
current technique where, in the worst case, the user can do little
but guess a upper bound on MMAR. However, before using our
system to deploy a garbage collector in a real-time environment,
further study on the effect of converting from bytes per instruction
to bytes per unit time is needed.

Admittedly, our set of benchmarks are not real-time bench-
marks, but one reason for a lack of real-time Java code is the effort
required to use the RTSJ. To date, the only substantial RTSJ code
is under development at NASA and they are not releasing that code
yet.

Our implementation can be improved in a number of ways.
One idea is to investigate path-sensitive approaches, including a
meet-over-all-valid-paths approach [27]. We would like to inves-
tigate static approaches to bounding pointer density for real-time
programs. As many realistic programs do not maintain a constant
rate of allocation at runtime [21], we plan to adapt our approach
to handle variable allocation rates. This is especially important for
programs in which not all methods are called by real-time threads.
MMAR within execution of real-time threads is the relevant statis-
tic for the real-time collector.

We also expect to be able to get a tighter bound on MMAR by
relaxing the assumption that all instructions execute in one clock
cycle. If the number of needed clock cycles for each instruction is

15 2005/9/29

known, modifying the transfer function to account for this would
not be difficult.

Acknowledgements
We thank Martin Linenweber for his efforts in developing the
PCESjava bytecode-engineering and analysis framework [18].

We thank Richard Souvenir for his careful reading of this paper.
We thank Joe Cross for his suggestion concerning the usefulness
of per-method allocation rates as a guide to help developers rewrite
code to improve CPU utilization. We also thank the LCTES 2005
reviewers for their insightful suggestions on an earlier version of
this paper that appeared there [22].

References
[1] Ken Arnold, James Gosling, and David Holmes. The Java

Programming Language. Addison-Wesley, Boston, third edition,
2000.

[2] David F. Bacon, Perry Cheng, and V. T. Rajan. Controlling fragmen-
tation and space consumption in the Metronome, a real-time garbage
collector for Java. In Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES 2003). ACM
Press, 2003.

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2003), pages 285–298. ACM Press,
2003.

[4] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr,
David Hardin, and Mark Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[5] Edward G. Bradford. Runtime: Context switching, part 1. �C�C�����E�C����A�f� ����� �q�1�s���s�s� �f� ��� ��� �������C���>�C�s���C���A�8�s���8�8�C� � �C s¡8� , July 2002.
[6] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron.

Contaminated garbage collection. In Proceedings of the ACM
SIGPLAN ’00 conference on Programming Language Design and
Implementation (PLDI 2000), pages 264–273, 2000.

[7] Lisa Carnahan and Marcus Ruark. Requirements for real-time
extensions for the Java platform (final draft). Technical report, NIST,
1999.

[8] C. J. Cheney. A nonrecursive list compacting algorithm. Communi-
cations of the ACM, 13(11):677–678, November 1970.

[9] Perry Cheng and Guy Belloch. A parallel, real-time garbage collector.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2001), pages 125–136,
2001.

[10] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape
analysis for Java. ACM SIGPLAN Notices, 34(10):1–19, 1999.

[11] Edsger W. Dijkstra, Leslie Lamport, A.J. Martain, C.S. Scholten,
and E.F.M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(11):966–975,
November 1978.

[12] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage
collector for virtual-memory computer systems. Communications of
the ACM, 12(11):611–612, November 1969.

[13] William H. Harrison. Compiler analysis of the value ranges for
variables. IEEE Transactions on Software Engineering, SE-13(3),
May 1977.

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[15] IBM developerWorks. Jikes RVM Home Page. ¢ �A�8�8�f�C�E� �� � �s� � ��£ � �C¤s� � �8�� , 2005.
[16] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling

Algorithm: Exact Characterization and Average Case Behavior.
In Proceedings of the 10th IEEE Real-Time Systems Symposium
(RTSS 1989), pages 166–171. IEEE Computer Society Press, 1989.

[17] Tom Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, Massachusetts, second
edition, 1999.

[18] Martin R. Linenweber. A study in Java bytecode engineering with
PCESjava. Master’s thesis, Washington University in St. Louis, 2003.

[19] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. JACM, 20(1):46–61,
January 1973.

[20] Tobias Mann. Static determination of allocation rates to support
real-time garbage collection. Technical Report WUCSE–05–24,
Washington University in St. Louis, Department of Computer Science
and Engineering, May 2005. M.S. Thesis.

[21] Tobias Mann and Ron K. Cytron. Automatic Determination of Factors
for Real-Time Garbage Collection. Technical Report WUCSE–04–
45, Washington University, St. Louis, Missouri, 2004.

[22] Tobias Mann, Morgan Deters, Rob LeGrand, and Ron K. Cytron.
Static determination of allocation rates to support real-time garbage
collection. In Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES 2005), pages
193–202. ACM Press, 2005.

[23] Steven S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., 1997.

[24] NanoAmp Solutions Inc. MOCA-J Technical Brochure. www.nanoamp.com/
MOCA-J Tech Brochure.pdf.

[25] Kelvin Nilsen. Issues in the design and implementation of real-time
Java. Java Developer’s Journal, 1(1):44, 1996.

[26] F. Pizlo, J.M. Fox, D. Holmes, and J. Vitek. Real-time Java scoped
memory: Design patterns and semantics. In Proceedings of the
Seventh IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2004), Vienna, Austria, May
2004. IEEE.

[27] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In Conference Record
of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 49–61, 1995.

[28] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded
Real-Time Systems. PhD thesis, Vienna University of Technology,
Vienna, Austria, 2005.

[29] Ran Shaham, Elliot Kolodner, and Mooly Sagiv. Heap profiling for
space-efficient Java. ACM SIGPLAN Notices, 36(5):104–113, May
2001.

[30] Fridtjof Siebert. Eliminating external fragmentation in a non-moving
garbage collector for Java. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages 9–17, 2000.

[31] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC,
1999. Available by purchase from SPEC.

[32] Alexandru Sălcianu and Martin C. Rinard. Pointer and escape analysis
for multithreaded programs. In Principles Practice of Parallel
Programming, pages 12–23, 2001.

[33] Mads Tofte and Jean-Pierre Talpin. Region-based memory man-
agement. Information and Computation, 132(2):109–176, February
1997.

[34] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–
210, 1991.

[35] John Whaley and Martin Rinard. Compositional pointer and escape
analysis for Java programs. ACM SIGPLAN Notices, 34(10):187–206,
1999.

[36] Paul R. Wilson. Uniprocessor garbage collection techniques (Long
Version). Submitted to ACM Computing Surveys, 1994.

[37] Mao Zhi-gang, Wang Tao, and Ye Yi-zheng. Designing JCVM in
Hardware. www.ifip.or.at/con2000/icda2000/icda-2-5.pdf.

A. Range Propagation
As described in Section 4.3.1, we employ range propagation [13]
to bound statically the size of allocated arrays. This appendix pro-

16 2005/9/29

¥ Ð�Ñ	¸ Ñh¦ ¥C§o¨© Ð(Ï«ª:Ñ á5á 5�¬�Ð8:�­"¹5¹�½�º#®{¯° Ñ²±�¦ ¥C§o¨³ ´µ ¶ 9 à"á ¼�¸¸·�¹º689 à ­"¹5¹�½�ºh¦°Ñ á�» ¶ 9 à�á ¼�¸¼·�½�¹ ¨
Figure 19. A Java code snippet.

vides additional details about our implementation and presents ex-
periments demonstrating its utility.

A.1 Background
Constant propagation [34, 23] is an optimization that aims to re-
duce the number of data accesses required by a program. First, lo-
cations of the target program resulting in statically-known, constant
state (such as an assignment of � to a constant value) are identi-
fied. These static constants are pushed forward through the con-
trol flow graph of the program, transitively resulting in additional
statically-known state (e.g., if

b
is assigned to � while � is constant

and statically-known). If state is tainted with statically-unknown
data (such as user input), or if conflicting state is detected, classic
constant propagation analysis gives up and declares the data non-
constant (

£
).

Sometimes, however, program state, while nonconstant, is
drawn from a statically-known, constrained range (i.e., it is stat-
ically bounded). This defeats the analysis underlying classic con-
stant propagation but is a common behavior of programs (see
Section A.4). A more general analysis can establish and main-
tain statically-known bounds on program variables and arithmetic
expressions. This allows other static program analyses requiring
bounds on particular values (as, for example, an analysis that re-
quires a static bound on the size of a dynamic allocation request)
to provide better results than if they were to use the results of tra-
ditional constant propagation.

Applications. Range propagation analysis gives useful results
even when those results provide nonconstant ranges of variable
values. Some static analyses, including bounding the size of array
allocation requests as discussed in Section 4.3.1, depend not on
knowing the specific value of a program variable, but a bound on
the value. In the context of this paper, range propagation analysis
can statically bound the size of some array allocation sites.

As a simple example, consider the Java code snippet in Fig-
ure 19 and its associated control-flow graph in Figure 20. In a clas-
sic constant propagation analysis, Ñ is constant at the start of exe-
cution of lines 2 and 3 (where Ñ vßÀ��

), and after the execution of
line 3 (where Ñ väÀ����

). However, at lines 4 and 5, when the two
program paths merge, Ñ is nonconstant (being either 10 or 100), so
classic constant propagation gives up on Ñ at this point.

Range analysis, however, observes the merging program state
at line 4 and calculates the bounds on Ñ to be ¾ À��4��À��"�8¿ . This is
also conservative, of course, as range analysis doesn’t indicate that
10 and 100 are the only values permissible (which is statically
knowable); instead, range analysis simply indicates that Ñ must be
valued between 10 and 100, inclusive. For an analysis needing to
know only a bound on the size of the allocated object array, this is
a sufficient result; nothing more would be gained by knowing the
specific values that Ñ may take.5

5 The astute reader will note that this statement holds true for this example,
but may not in others; Section A.2 discusses some cases where range
analysis can fail to establish bounds that would be statically determined
by an analysis that tracked sets of values, rather than bounds on values, that
program variables may take.

n *= 10

n = 10

objArray = new Object[n]

needBigArray ?

Figure 20. The control-flow graph of the Java code snippet of
Figure 19.

A.2 Approach
We formulate the problem as a dataflow framework over integer
variables with fixed-width binary representations.6 For our presen-
tation here, we assume a single integer class, so that all integers
are of the same size. We assume À�ÁsÂ-ÁsÂqÃ is the smallest value that
may be held by the data type, and that Àq­�Ä�ÁsÂ�Ã is the largest value
that may be held by the data type. Note that

� saÀ-ÁCÂ-ÁsÂqÃ � À�txvÀq­�Ä�ÁsÂ�Ã .
This representation suits our needs for bounding array alloca-

tion sizes. Range propagation can be extended to other data types,
but that is outside the scope of this paper.

First, we some preliminary definitions. If
�

is a lower bound on
a variable and Å is an upper bound on the same variable, inclusive,
we write a value range for the variable ¾ �Z� Å ¿ . When � K b

, a
range ¾ � �_b3¿ contains no elements. A range is smaller than another
range if it admits fewer elements of Æ . The set Ç is the set of
program variables.7

With these preliminaries, we now formally describe our frame-
work:- v ÇÉÈ ��ª � ¾ �G� Å ¿ËÊ�� Àq­�Ä3ÁsÂqÃ ê �G� Å ê Àq­�Ä�ÁsÂ�Ã !- ¡Âv ¾ À�­�Ä�ÁsÂqÃ � À�ÁsÂ-ÁsÂqÃ ¿- £Âv ¾ À�ÁsÂ-ÁsÂqÃ � À�­�Ä�ÁsÂqÃ ¿- ¥ is a widening operator that computes the smallest range that

includes the two input ranges- Ü ¤°Ý holds if and only if Ü ¥2ÝZv Ü
Thus maps variables to ranges,

£
provides no information (the

variable’s value range includes all values available to the data
type), and

¥
expands a range to include two ranges.

¡
contains

no elements, and it yields immediately to any other range under

6 In Java, all instructions (except
�A���EÌs�

and friends, right-shifts without
sign extension) interpret integer operands as signed values under two’s
complement.
7 In Java, the ”program variables” include stack cells and virtual machine
registers (the latter of which are referred to as ”local variables” in the
documentation [17]. Since we consider stack cells as program variables, we
don’t need to evaluate complex arithmetic expressions or treat temporary
values specially.

17 2005/9/29

meet; this curious definition is analogous to constant propagation’s
traditional definition of

¡
.

The transfer function for range propagation is more compli-
cated. Our approach evaluates arithmetic statically, when possible,
to bound the result. In the following sections, we define the transfer
function for different types of control flow nodes.

Assignment and negation. Given a simple assignment of ½ to º :½�Íc¦ º
the procedure is obvious— ½ inherits º ’s upper and lower bounds.

Similarly, we would expect that½�Íc¦ÏÎ�º
would flip the bounds; that is, ½ ’s upper-bound would be the addi-
tive inverse of º ’s lower-bound, and ½ ’s lower-bound would be the
additive inverse of º ’s upper-bound. However, this is not necessar-
ily so.

[discussion of finite fields?]
The problem is that º might be the most negative value avail-

able for its storage class (with its most-significant bit set and al
others unset). In this case, ºÏ¦�¦ÐÎ�º . Because of this, if º ’s range
includes this most negative possible value for its storage class, ½ ’s
lower-bound must also be this minimum value. If º is nonconstant,
then ½ ’s upper-bound must be the maximum possible value for the
storage class. Because this calculated range for ½ includes all pos-
sible values that a member of its storage class can take, effectively
nothing is known statically about its value range.8

It is interesting to note that the Java programming language
forbids code that might cause overflow in this way [1]. However,
Java bytecode that exhibits such behavior is legal, so a sequence
like ‘

â ÐsÑ�7 â ¾²Î °q©�Ò�Ó�Ôo¨ Ð(Ñ á : ¨ Ð ©5â ’ results in -32768. Other lan-
guages, like C, do not forbid such source code and can also exhibit
the behavior that

� � v � for some nonzero value of � .

Addition. Consider two values � and
b

, their lower bounds
� tand

�,Õ
, and their upper bounds Å t and Å Õ .� t ê � ê Å t�¼Õ ê b ê Å Õ

When these values are added, we get their sum �8� b . Upper and
lower bounds on this sum are denoted Å t � Õ and

� t � Õ :� t � Õ ê �¢� b ê Å t � Õ
Our goal is to find suitable values for Å t � Õ and

� t � Õ from the
bounds we do have on � and

b
. So, we would expect:� t � Õ v � t � � ÕÅ t � Õ v Å t � Å Õ

However, in a program analysis context we must carefully consider
overflow conditions, as � and

b
are in fact fixed-width fields.� t � Õ v Ö � t � � Õ if no overflowÀ-ÁsÂ�ÁsÂqÃ if overflowÅ t � Õ v Ö Å t � Å Õ if no overflowÀq­�Ä3ÁsÂqÃ if overflow

Any overflow condition affects both bounds; if
� t � � Õ doesn’t

overflow but Å t � Å Õ does, then
� t � Õ v À�ÁsÂ-ÁsÂqÃ and Å t � Õ vÀq­�Ä3ÁsÂqÃ . Since in our problem

£Âv ¾ _Ï×���×��.Ø � _Â ËÙÚ×��.Ø ¿ for
integers, we have effectively given up on bounding the integer at
this point.

8 A more sophisticated analysis could track more than simple lower-bound–
upper-bound ranges as we are doing here, to provide a statically-known
range of possible values in this case.

Subtraction. Once again, we have:� t ê � ê Å t� Õ ê b ê Å Õ� t þ Õ ê � �gb ê Å t þ Õ
And, once again, we would expect:� t þ Õ v � t � Å ÕÅ t þ Õ v Å t �<� Õ
but we get similar overflow conditions resulting in

£
.

Multiplication. Multiplication introduces additional complica-
tions: � t , Õ v Ö � t w � Õ if � �_b î �Å t w Å Õ if � �_bRê°�Å t , Õ v Ö Å t w Å Õ if � �_b î �� t w � Õ if � �_bRê°�

With negative � and nonnegative
b

(or nonnegative � and nega-
tive

b
): � t , Õ v ��ÛÝÜ � Å t w � Õ �M� t w Å Õ !Å t , Õ v �R�(� � Å t w �¼Õ4�M� t w Å Õ !

However, we cannot guarantee that � (resp.
b

) is nonpositive un-
less Å t ê �

(resp. Å Õ ê �
), and we cannot guarantee that �

(resp.
b

) is nonnegative unless
� t î �

(resp.
� Õ î �

). So the
general form for multiplication is:� t , Õ v Ö � t w �¼Õ if � �_b î �Å t w Å Õ if � �_bRê°�Å t , Õ v Ö Å t w Å Õ if � �_b î �� t w � Õ if � �_bRê°�

With negative � and nonnegative
b

(or nonnegative � and nega-
tive

b
): � t , Õ v ��ÛÝÜ � Å t w � Õ �M� t w Å Õ !Å t , Õ v �R�(� � Å t w � Õ �M� t w Å Õ !

However, we cannot guarantee that � (resp.
b

) is nonpositive un-
less Å t ê �

(resp. Å Õçê �
), and we cannot guarantee that �

(resp.
b

) is nonnegative unless
� t î �

(resp.
� Õ î �

). So the
general form for multiplication is:� t , Õ v ��ÛÝÜ � � t w � Õ � Å t w Å Õ �M� t w Å Õ � Å t w � Õ !Å t , Õ v �R�(� � � t w �¼Õ�� Å t w Å Õ4�M� t w Å Õ	� Å t w �,Õ !
with the familiar overflow conditions resulting in

£
.

Division. Similar to multiplication. The general form is similar,
with guards against division by zero (see Figure 21). In our target
programming languages, if the program does divide by zero, the
undefined result is not stored into the program variable on the left-
hand side of the assignment. For that reason, we are justified in
excluding zero from the divisor’s range.

In fact, if the divisor is zero, a branch to an exception han-
dler (or exiting the method) will be taken. Along this exceptional
branch path, the divisor is known to have been zero. On the non-
exceptional path, the divisor cannot have been zero. This knowl-
edge can be used to further constrain the ranges calculated by the
analysis along these distinct paths. As an example, consider Fig-
ure 22. At a division instruction, ½ and º are each known to have
bounds ¾ ����À��s¿ . The division ½qÞ�º is performed. Along the excep-
tional path, ½ ’s bounds are unchanged but º is known to be 0. Along
the non-exceptional path, ½ ’s bounds are also unchanged9 and º ’s
bounds are unchanged except for the fact that it is known to be
nonzero.

9 To see why this is so, consider cases where
� ñß� before the di-

vision (it will also be zero after) and where
� ñ òE� and

� ñ
18 2005/9/29

� tsà Õ v Ö undefined if Å t vÂ� t v Å Õ v@� Õ v@���ÛÝÜ � � t ÞÏásÅ Õ�� Å t ÞÏâ �,Õ�� Å t ÞÏásÅ Õ��M� t ÞÏâ �,Õ ! otherwiseÅ tsà Õ v Ö undefined if Å t vÂ� t v Å Õ v@� Õ v@��R��� � � t ÞÏásÅ Õ � Å t ÞÏâ � Õ � Å t ÞÏásÅ Õ �M� t ÞÏâ � Õ ! otherwise

where â � v Ö 1 if � v@�� otherwiseá � v Ö -1 if � vÂ�� otherwise

Figure 21. The range propagation transfer function for integer division control flow nodes.

(continue computation)

(handle exception)

x /= y

x = [0, 10]
y = [0, 10]

x = [0, 10]
y = [1, 10]

x = [0, 10]
y = [0, 0]

Figure 22. A division, possibly by zero. Edges are tagged with
statically-known bounds on program variables ½ and º .
Comparisons. can conclude � K b if

� t K Å Õ etc.

Conditionals. on a conditional branch, can relate new knowledge
(result of comparison etc.) to previous knowledge (e.g., DUPs)

Summary. The range propagation data flow result at each node is
a function mapping program variables to value ranges. Our transfer
function statically evaluates arithmetic and other operations, and
it updates this mapping to take advantage of the new information
provided.

A.3 Implementation
We have implemented an intraprocedural range propagation analy-
sis for Java bytecode using the PCESjava framework [18]. Our im-
plementation simulates the Java stack and registers found in Java
virtual machines, except that our stack slots and registers contain
ranges instead of values. These stacks and registers are pushed
through each function’s control flow graph so that each program
point (node in the control flow graph) is tagged with bounds on
program state.

Limitations. There are several limitations of the implementation
that are not necessarily limitations of the general approach to range
propagation. First, as noted, our implementation is intraprocedural,
so while bounds might be discovered by this approach for program
variables assigned to the result of a procedure call, or bound to a
procedure’s formal arguments, our implementation does not dis-
cover such bounds.

Also, our implementation doesn’t track bounds on class and ob-
ject fields. This may seem a trivial extension to an implementationò (
�

is still 10 after the division). In terms of the general for-
mula, ã tsà Õ ñ ôåäçæP�1�¼è<òE� ù òE�¼èÚ� ù òE�,è<òE� ù �¼èÚ� � and é tsà Õ ñô^õ�öD�1�¼è<òE� ù òE�,èê� ù òE�,èýòE� ù �¼èê� � .

that tracks other program state. However, many Java programs are
multithreaded, and we would have to take into account the possible
actions of other threads, and in order to obtain an effective solution,
we would perhaps be required to include further analyses to deter-
mine which object fields are inaccessible by other threads at certain
points in the program’s execution10.

We don’t do conditional stuff. (like tracking dups and inferring
bounds later)

Discussion of overflow conditions?
no tracking of array size after creation e.g. array.length could be

statically determined but isn’t.

A.4 Experimentation
We performed a simple experiment to verify a claim we make in
Section A.1 and demonstrate that range propagation can be useful
as an extension to classic constant propagation.

Show vs. classic constant propagation: how many program vari-
ables are statically-known constants; how many array allocation
points can be statically-bound

Also show: distribution of bounds sizes
how often overflow actually occurs

A.5 Conclusions
We have described and demonstrated our implementation of range
propagation [13], an extension to constant propagation [34, 23]
that statically provides upper and lower bounds on program vari-
ables in cases where they are nonconstant. These upper and lower
bounds may result in future variables being statically-known con-
stants (where constant propagation would fail), and provides more
accurate results to other analyses, such as allocation-size analysis.

10 For example, an object that has been newly instantiated but a reference
to which has not yet escaped [32, 35, 10] would be inaccessible to other
currently-executing thread contexts

19 2005/9/29

