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ABSTRACT 
This chapter explores a new approach that may be used in game development to help human players 
and/or non-player characters make collective decisions.  We describe how previous work can be applied 
to allow game players to form a consensus from a simple range of possible outcomes in such a way that 
no player can manipulate it at the expense of the other players.  We then extend that result and show how 
nonmanipulable consensus can be found in higher-dimensional outcome spaces.  The results may be 
useful when developing artificial intelligence for non-player characters or constructing frameworks to aid 
cooperation among human players. 
 
INTRODUCTION 
Teamwork is important in many games.  Whether they are human players or non-player characters 
(NPCs) or both, game entities must often work together to achieve goals.  However, those goals do not 
always coincide perfectly, and, even when they do, players will not always agree on the best next course 
of action to take. 
 
Much research (see especially Rabin 2002, sec. 7) has explored effective decision-making for individual 
game agents, even in a multiagent context.  By contrast, in this work, we assume that all agents have 
already individually decided which of the available outcomes (which are usually actions) they prefer over 
others, and we assume the agents desire to use those preferences to reach consensus for the group. 
 
For an example game situation, imagine a team of wargame players with a common goal: band together to 
attack the western coast of a continent held by a common enemy.  They could attack the coast’s 
northernmost point, the southernmost point or anywhere in between, and each player has a different 
favorite attack point.  If the players can be trusted to express sincere preferences, their preferred points 
could simply be averaged to give the consensus point.  Averaging, however, can allow some players to 
gain a better outcome from their point of view by exaggerating their preferences, whereas other 
aggregation mechanisms may never reward such insincerity. 
 
When a group of players aims to benefit all members of the group by coordinating their actions, a method 
of combining their preferences into a single outcome is useful, but the usefulness may disappear if 
individual players can manipulate the outcome by expressing insincere preferences.  Here we present a set 
of nonmanipulable collective-decision-making methods that apply to a wide range of game situations. 
 
In the sections below we review previous work that informs ours, look at several game situations that 
motivate our approach and present the ideas that provide an innovative solution. 
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BACKGROUND IDEAS 
The core ideas of this chapter, while new, are based in extant work from fields such as computer science, 
mathematics, political science and economics. 
 
Mechanism design 
Returning to the above wargame example, if a team of players is trying to agree on a coastal attack point, 
their preferred points could simply be averaged to give the consensus point, but doing so sometimes 
rewards insincerity on the parts of the players.  The field of mechanism design (Nisan 2007) has evolved 
to find decision-making mechanisms that satisfy particular properties, often some kind of immunity or 
resistance to strategic manipulation. 
 
Strategic manipulation is a common problem in collective decision-making.  It is well known that voters 
can gain advantage under most voting systems by voting insincerely (Gibbard 1973, Satterthwaite 1975).  
Examples include voting for an alternative that is not a voter’s first choice and ranking alternatives 
untruthfully.  Traditionally, this problem is discussed in political science, but more recently the 
techniques of computer science have been applied with success (Bartholdi, Tovey & Trick 1989, Conitzer 
& Sandholm 2003, Elkind & Lipmaa 2005, Procaccia & Rosenschein 2006).  In this chapter we explore a 
particular approach to creating manipulation-resistant mechanisms. 
 
The Declared-Strategy Voting framework 
Declared-Strategy Voting (DSV) is a computationally-based response to manipulable voting systems 
(Cranor & Cytron 1996, Cranor 1996).  Under DSV, each voter submits preferences over the available 
outcomes.  The DSV system then uses those preferences to vote optimally (and, perhaps, insincerely) on 
each voter’s behalf in a simulated election using some underlying voting method.  It continues to cast 
optimal ballots on behalf of each voter until an equilibrium is found or some other stopping criterion is 
reached.  The outcome at equilibrium is then taken as the DSV outcome, or the results of the voting 
rounds could be used by a policy-maker to reach a justifiable decision. 
 
The hope is that, since the DSV system is attempting to vote strategically on each voter’s behalf, no voter 
will have a reason to mislead the system by expressing insincere preferences—in fact, an attempt to 
mislead the system may easily backfire.  DSV has been shown to be effective in transforming some 
manipulable voting systems into manipulation-immune ones with the same available outcomes. 
 
A previous result: AAR DSV 
In past work, we have successfully applied DSV to an average-approval-rating (AAR) system, which 
takes voters’ ratings between 0% and 100% as input and outputs their average (LeGrand 2008, LeGrand 
& Cytron 2008).  Such systems are widely used for rating movies, music, and buyer/seller reliability on 
the Internet on websites such as Amazon, Metacritic and Rotten Tomatoes; similar systems are used for 
many diverse applications.  We assume only that each voter has an ideal outcome between 0% and 100% 
and prefers the outcome to be as close to that ideal as possible.  So, for example, a voter whose ideal 
outcome is 20% cannot prefer 40% to 30%.  We found that the resulting system had some surprising and 
attractive properties:  Given reasonable assumptions, optimal voting strategy is unique and can be fully 
characterized, and, given any input ratings, the outcome at equilibrium is unique.  We discuss these 
results in more detail below. 
 
 Most importantly, we were able to prove that no AAR DSV voter can achieve an outcome closer to ideal 
than by voting sincerely.  As an example, imagine a group of three game players who are deciding how 
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much of a collective resource to use towards an immediate goal, such as how much of their magic store to 
employ against the next major enemy, or how much of a healing pack to use before a fight.  Say that the 
three players have sincere preferences [25%, 40%, 70%] and express them sincerely to an AAR DSV 
system.  After DSV iteratively applies optimal strategies on behalf of each player, the equilibrium 
becomes [0%, 20%, 100%], giving the outcome 40%.  Now, if the first player, somewhat dissatisfied with 
this outcome, had expressed the preference 0% instead of 20% in an effort to pull the outcome closer to 
20%, the DSV equilibrium and outcome would be the same as above; in essence, the DSV system is 
already manipulating on behalf of each player, so misleading the DSV system is unnecessary and 
fruitless.  For this AAR voting system, the DSV framework perfectly internalizes voting strategy—
players can never gain advantage by exaggerating their position. 
 
If this meta-voting system is to be used to find consensus in real games, it will be important to be able to 
calculate the outcome quickly.  Fortunately, it turns out that there is an efficient algorithm to calculate the 
AAR DSV outcome, one that is not significantly slower than simply sorting the numerical inputs of the 
players. 
 
AAR DSV offers a way for agents to find consensus within a numerical range (a line segment) without 
the possibility of successful manipulation by selfish agents.  Many game situations, however, require 
finding consensus within other outcome spaces.  We will see that the DSV framework is flexible enough 
to work well with other useful outcome spaces. 
 
 
A NEED: FINDING COLLECTIVE CONSENSUS IN GAMES 
Some games are purely competitive and have no room for cooperation and thus no need to find consensus 
among a group of players.  But more common are games that feature multiple agents who are, at least 
under some circumstances, motivated to cooperate to the advantage of all, and the rise of online and 
social gaming is making these situations more common.  Agents in games include both human players 
and computer-controlled NPCs, and opportunities for cooperation can emerge among human players, 
among NPCs, and even between humans and NPCs.  Frequently, to cooperate most efficiently, these 
groups of agents need to come to some sort of explicit consensus.  We will give three example situations 
from real games that illustrate benefits of our approach, each with a different outcome space. 
 
Finding consensus in one dimension 
Often game agents need to come to a numerical consensus within the space of a line segment, the 
endpoints of which may be thought of as 0% and 100%.  Many times, agents may need to agree on how 
much, from 0% to 100%, of a common resource to use at a given time.  As another, more concrete, 
example, imagine a game like Sid Meier’s Colonization, in which a single colony may have many cities, 
each individually controlled by either a human player or an NPC.  One of the most important facets of the 
game is deciding when your colony should revolt against its parent country, and a colony’s players may 
disagree on the best time to revolt.  Triggering a successful revolt is based on the average level of 
discontent for the entire colony, so it is sometimes desirable to build up a measure of discontent in 
individual cities.  At any given time, then, each player may have a different ideal target for the colony-
wide average level of discontent, and the player controlling a given city has exclusive control over the 
level of discontent associated with that player’s city. 
 
As an example, consider a colony with three cities, each controlled by a different player.  The three 
players prefer that the colony-wide average level of discontent be [25%, 40%, 70%].  The players could 
manipulate their own cities’ discontent levels to move the colony-wide average towards their ideals, 
struggling against one another, but doing so would require sacrifices to be made in other ways.  
Alternatively, they could “vote” their ideal colony-wide averages and agree to abide by the results, thus 
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requiring smaller changes to each city’s discontent level.  If the system that resolves input ratings into an 
outcome is chosen carefully, it will never reward insincerity and the players will be able to find consensus 
with confidence.  The AAR DSV system, introduced above and explored in more detail below, fits the 
bill:  It takes a vector of ratings between 0% and 100% as input, outputs a consensus rating, and is 
impossible for a voter to manipulate through insincere voting.  If the input vector were [25%, 40%, 70%] 
as in the example above, the DSV equilibrium would be [0%, 20%, 100%], giving the outcome 40%, 
which is the ideal outcome for one of the players. 
 
Finding consensus within a hypercube 
In other game situations, agents need to find consensus inside a hypercube of some dimensionality; each 
dimension can be seen as ranging between 0% and 100%.  One motivating example comes from Age of 
Empires, a real-time strategy game that can accommodate many human players and many NPCs.  Several 
human players working together may need to decide collectively the location for their newest base.  Every 
point in the game’s square map has two coordinates, one ranging between the west edge, 0%, and the east 
edge, 100%, and one between the south edge, 0%, and the north edge, 100%.  Each player has a most-
preferred point for the base and would like to see the base built as close to that ideal point as possible.  
Players may be assumed to prefer points closer by Euclidean distance to their ideal point to points farther 
from it, so a player with the ideal point (60%, 10%) can be assumed to prefer that the base be built at 
(65%, 20%) than at (50%, 30%).  When a nonmanipulable system is used to aggregate input points into 
an outcome point, it will not be possible for the player with ideal (60%, 10%) to change the outcome from 
(50%, 30%) to (65%, 20%) by changing their vote point from the sincere (60% 10%) to any other point. 
 
Finding consensus within a simplex 
Another common kind of game decision to make collectively involves the allocation of a finite resource 
among several uses.  Essentially, the agents must agree on a point within a simplex of some 
dimensionality, where each dimension ranges between 0% and 100% and the values chosen for each 
dimension sum to exactly 100%.  For example, in a space war game such as Star Trek Online, the officers 
on a starship must often decide how to deploy its limited energy resources; shields, weapons and 
maneuvering all require energy.  The ship’s officers may be controlled by separate AI programs, which 
may sincerely disagree on the policy best for the ship.  At a given time, one AI officer may estimate 
(30%, 60%, 10%) as the best policy, giving 30% of the available energy to shield systems, 60% to 
weapons and 10% to the helm, while another may prefer (50%, 50%, 0%).  Each officer may be assumed 
to prefer points nearer to ideal in each dimension to points farther in each dimension; for example, we 
may assume that an officer that most prefers (30%, 60%, 10%) will prefer the outcome (40%, 40%, 20%) 
to (50%, 30%, 20%).  Even when all relevant agents are controlled by a computer, it may be that a 
nonmanipulable consensus-finding system is preferred; for the sake of realism, AI agents may be 
programmed to take advantage of manipulable systems whenever possible (unless they are part of a hive 
collective such as the Borg). 
 
The above examples are inspired by currently available games, but we believe social cooperative games 
are potentially the best-suited games for our method.  Most of these games are still in development as 
designers and game programmers figure out how to implement effective cooperative strategies among 
players that play non-concurrently; our techniques do not require players to indicate their preferences 
simultaneously, and so they may prove especially useful for this kind of game. 
 
 
USING DSV TO FIND STABLE CONSENSUS IN ONE DIMENSION 
First we consider the simplest outcome space that players may need, which is a line segment; we will 
assume that the available outcomes range between 0 (0%) and 1 (100%).  We further assume: 
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• There are n players that want to find a consensus in the inclusive interval from 0 to 1. 
• Each player i submits a value iv  in the inclusive interval between 0 and 1; the resultant vector v  

is used to determine the consensus outcome. 
• Each player i has an ideal outcome ir  and prefers that the outcome be as near to ir  as possible. 

This last assumption, that of single-peakedness (Moulin 1980), is required for the conclusions reached 
below, but it is important to point out that it rules out certain preference orderings.  We are assuming, for 
example, that an agent that prefers an outcome of 0.2 to 0.3 cannot also prefer 0.4 to 0.3.  Still, it is an 
imminently reasonable assumption for many game situations. 
 
Average aggregation 
Perhaps the most natural outcome function to use is the average of the inputs, which minimizes the sum 
of squared distances between the outcome and the inputs.  While the Average aggregation function is 
sensitive to each voter’s input, it has an important disadvantage:  Voters can often gain by voting 
insincerely.  For example, if 3=n , ]7.0,4.0,25.0[=r  and all three players express their sincere 
preferences, then ]7.0,4.0,25.0[=v  and the Average outcome is 0.45.  Consider player 3, whose ideal 
outcome is 7.03 =r .  That player could achieve a better outcome by not expressing the sincere preference 

7.03 =v  and instead choosing 13 =v .  The resulting Average aggregation yields the outcome 0.55, 
which, being closer to 0.7, is preferred by player 3 to 0.45. 
 
Rationally optimal strategy for Average aggregation 
Using the Average outcome opens the door for manipulation, but investigating the nature of that 
manipulation further will prove fruitful.  If we assume that all players want only to optimize the outcome 
from their own points of view, we can characterize rational voting.  If all other players have expressed 
their preferences and player i is deciding how to choose iv , the ideal outcome ir  could be achieved by 

choosing ∑
≠

−=
ij

jii vnrv , but this choice for iv  is allowed only if it is between 0 and 1.  In general, 

player i can move the Average outcome as near to ir  as is possible by choosing 



















−= ∑

≠

1,0,maxmin
ij

jii vnrv , which is the rationally optimal strategy for any player i. 

 
An example will illustrate that, if all players use this strategy iteratively, an equilibrium may be reached 
from which no player would change.  Imagine that the three players from above with sincere preferences 

]7.0,4.0,25.0[=r  begin by expressing ]0,0,0[=v .  If they then rationally adjust their strategies in 
order of descending ideal preferences, they would calculate as follows. 

Calculate: ( )( ) 11,0,01.2maxmin1,0,maxmin
3

33 =−=

















−= ∑

≠j
jvnrv  

Update: ]1,0,0[=v  
New outcome: 333.0≈v  

Calculate: ( )( ) 2.01,0,12.1maxmin1,0,maxmin
2

22 =−=

















−= ∑

≠j
jvnrv  

Update: ]1,2.0,0[=v  
New outcome: 4.0=v  
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Calculate: ( )( ) 01,0,2.175.0maxmin1,0,maxmin
1

11 =−=

















−= ∑

≠j
jvnrv  

Update: ]1,2.0,0[=v  
New outcome: 4.0=v  

 
After one pass through the players, an equilibrium from which no player would change has been found, 
and the Average outcome at this equilibrium is 4.0=v .  Player 1 would prefer a smaller outcome, but 1v  
is already as small as is allowed; player 3 would prefer a larger outcome, but 3v  is already as large as is 
allowed; player 2 has set 2v  exactly where it must be to achieve the outcome 4.02 == rv .  Thus 
Average aggregation is manipulable by strategic players willing to submit insincere preferences. 
 
But strategic manipulation may not be so undesirable if an equilibrium can always be found as rapidly as 
in the above example whatever the players’ sincere preferences.  Given a set of n players and their sincere 
preferences r , LeGrand (2008) shows, by counting the number of players that must be strategizing at 
each of the two extremes, that any average v  at equilibrium must satisfy two inequalities: 

{ } nvrvi i ≤<:  

{ }irvinv ≤≤ :  
LeGrand (2008) then proves that: 

• At least one equilibrium v , at which ( ) 

















−=∀ ∑

≠

1,0,maxmin
ij

jii vnrvi  (so that no player i 

would be motivated to change iv  unilaterally), must exist.  (The proof shows that the same 
algorithmic approach as seen in the example above will always find an equilibrium in one pass, 
which requires showing that no player i, after choosing iv , would want to change its value later in 
the pass.) 

• Multiple different such equilibria may exist, but all such equilibria must have the same Average 
outcome.  (The proof shows by contradiction that any two averages at equilibrium, which must 
satisfy the above two inequalities, must be equal.) 

It follows that, given the vector of sincere preferences r  as input, the equilibrium Average outcome is 
unique and can be defined as a mathematical function. 
 
Average-Approval-Rating DSV 
The DSV framework allows players to express their ideal outcomes, then “votes” for them iteratively 
until a stable outcome emerges.  So, applied to the Average system discussed above, players would input 
their preferences and the DSV system would simulate the same rationally strategic voting illustrated 
above, reliably giving a unique outcome.  Doing so explicitly provides an effective AAR DSV algorithm, 
but LeGrand (2008) proves that, given a vector of expressed preferences v , the AAR DSV outcome can 
be calculated yet more efficiently: 
 

sort v  so that ( ) ji vvji ≥≤∀  
0←w  

for i = 1 to n do 
( )( )1,0,maxmin wnvww i −+←  
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return 
n
w

 

 
This algorithm runs in ( )nnO log  time if a ( )nnO log -time sort is used. 
 
The most important property of this new AAR DSV system is that it cannot be manipulated by strategic 
players who are willing to submit insincere preferences, as the Average system can.  LeGrand (2008) 
proves that AAR DSV never rewards insincerity:  No player i can move the AAR DSV outcome closer to 
the ideal ir  by expressing a preference other than ii rv = ; the proof entails first proving that: 

• An AAR DSV outcome cannot be increased (respectively, decreased) without increasing 
(decreasing) at least one of the inputs.  (The proof is by contradiction and uses the two 
inequalities that any average at equilibrium must satisfy.) 

• If an AAR DSV outcome is smaller (respectively, larger) than one of the inputs, the outcome does 
not change when that input is increased (decreased).  (The proof relies on the uniqueness of the 
average at equilibrium.) 

Once these two points are proved, it is straightforward to show that no player i can gain (but may lose) 
from moving iv  away from sincerity.  This nonmanipulability result is satisfying because it shows that 
the DSV framework, by using the inputs to “vote” on each player’s behalf, perfectly internalizes all 
required strategy, allowing players to focus on more important matters than attempts to manipulate the 
consensus. 
 
Therefore, if a collective decision is to be made inside a line segment, the AAR DSV approach provides a 
way to find a consensus in ( )nnO log  time without the possibility of any advantage gained by insincere 
players.  Above we imagined a team of wargame players banding together to attack the western coast of a 
continent held by a common enemy.  If they used AAR DSV to decide how far north or south to attack, 
none of the players would have any reason to express an insincere preference, and the players would be 
able to forget about outfoxing each other and concentrate on the attack itself. 
 
 
USING DSV TO FIND STABLE CONSENSUS IN A HYPERCUBE 
As discussed above, another potentially important outcome space for game players is a hypercube, 
essentially a cross product of line segments.  For example, players might want to agree on a point inside 
the two- or three-dimensional game map to attack or at which to meet, or they may be making several 
independent 0%-to-100% decisions at once.  This problem is essentially equivalent to making two, three 
or more 0%-to-100% decisions as a package; 0% might mean the west edge of a map and 100% might 
mean the east edge, etc.  We will assume that the available outcomes in each of the d dimensions range 
between 0 (0%) and 1 (100%).  We further assume: 

• There are n players that want to find a consensus inside the hypercube of dimension d. 
• Each player i submits a d-dimensional vector iv , each scalar coordinate of which is in the 

inclusive interval between 0 and 1; the resultant vector v  is used to determine the consensus 
outcome. 

• Each player i has an ideal outcome ir  and prefers that, in each of the d dimensions individually, 
the outcome be as near to ir  as possible. 

Instead of this last assumption, that of intradimensional single-peakedness, we could assume simply that 
each player i would like to minimize the Euclidean distance between the outcome and ir , but that is 
actually a stronger assumption than we require.  Fortunately, if each player aims simply to minimize the 
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Euclidean distance between the actual outcome and their ideal outcome, as arguably would often be the 
case, then this notion of dimension-independence holds. 
 
However, our assumption does rule out certain preference orderings that might conceivably occur in a real 
game.  For example, consider a game map over which a group of RPG players is deciding collectively 
where to meet.  It may be that one player, player i, prefers to meet near a river that flows northeast to 
southwest, so if the consensus is to meet somewhere in the west, player i would prefer meeting points 
farther to the south, whereas if the consensus is to meet somewhere in the east, player i would prefer 
meeting points farther to the north.  In other words, player i might prefer both (0, 0) to (1, 0) and (1, 1) to 
(0, 1).  Such a player would not be able to isolate one ideal point ir  that satisfies our assumptions; only a 
richer input space would allow expressing such preferences.  But our assumption is reasonable for many 
common game situations, including any in which the dimensions are completely independent. 
 
Average aggregation is easily generalized to a higher-dimension hypercube by taking the average of each 
coordinate separately, effectively calculating the centroid, the center of mass given a set of unit masses.  
Alternatively, one can imagine attaching Hookean springs of equal spring constants to each fixed input 
point, then gluing the other ends of the springs together; the glue point will come to rest at the centroid.  
This generalization is equivalent to finding the point that minimizes the sum of squared distances between 
that point and all of the input points.  The resulting system is rotationally invariant and is equivalent to 
conducting d separate and independent Average elections (LeGrand & Cytron 2008).  Thus, the results 
above for strategic behavior under the one-dimensional Average system apply to the “election” for each 
coordinate.  In particular, if each voter has separable preferences (Border & Jordan, 1983), so that 
preferences in one dimension are independent of preferences in all other dimensions, conducting a d-
dimensional AAR DSV election is equivalent to conducting d parallel one-dimensional AAR DSV 
elections, and so gives a nonmanipulable system.  (Such a preference-function space is not abundant by 
Zhou’s (1991) definition.) 
 
To illustrate briefly, consider two players with ideal preferences ( ) ( )[ ]1.0,6.0,3.0,2.0=r .  If they used 
Average aggregation and applied rational strategy iteratively, they would soon reach the equilibrium 

( ) ( )[ ]0,1,6.0,0=v , giving the outcome ( )3.0,5.0 .  At this equilibrium they are pulling each coordinate of 
the outcome toward their ideal outcomes to the greatest extent possible, which in this case requires 
insincerity.  If the players decided to use AAR DSV instead of Average, they could submit their sincere 
preferences, ( ) ( )[ ]1.0,6.0,3.0,2.0== rv 

, giving the outcome ( )3.0,5.0  directly, and the players would 
have no incentive to be insincere. 
 
Therefore, if a collective decision is to be made inside a hypercube, the AAR DSV approach provides a 
way to find a consensus without the possibility of any advantage gained by insincere players:  Simply use 
the one-dimensional AAR DSV in each of the d dimensions.  Using the AAR DSV algorithm given 
above, a nonmanipulable consensus can thus be found in ( )ndnO log  time. 
 
 
USING DSV TO FIND STABLE CONSENSUS IN A SIMPLEX 
The AAR DSV approach gives satisfying results for the line-segment and hypercube outcome spaces, but 
there are other outcome spaces that may be useful in game situations.  Another useful way to generalize 
the one-dimensional space between 0 and 1 into higher dimensions is into a simplex, as discussed above.  
For example, consider another decision situation, in which players decide how a fixed amount of a 
resource should be allocated among several uses, such as (30%, 60%, 10%).  An AAR-style method 
would have each player suggest an allocation and then average them to give the outcome.  We will 
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assume that the available outcomes in each of the d dimensions range between 0 (0%) and 1 (100%); 
these coordinates of any one input point or outcome must sum to 1 (100%).  We further assume: 

• There are n players that want to find a consensus inside the simplex of d dimensions.  (Because 
the coordinates must sum to 1, this simplex is mathematically a )1( −d -dimensional space, but 
we will refer to d dimensions for convenience.) 

• Each player i submits a d-dimensional vector iv , each scalar coordinate of which is in the 
inclusive interval between 0 and 1 and all of which sum to 1; the resultant vector v  is used to 
determine the consensus outcome. 

• Each player i has an ideal outcome ir  and prefers outcome a to outcome b whenever a is nearer 
to ir  than b is in at least one of the d dimensions and a is farther from ir  than b is in none of 
them. 

Again, instead of this last assumption, we could assume simply that each player i would like to minimize 
the Euclidean distance between the outcome and ir , but it would be a stronger assumption than we 
require. 
 
In the hypercube space, it was possible to use one-dimensional AAR DSV in each dimension to arrive at a 
multidimensional consensus.  Effectively, each dimension was completely independent of the others.  But 
in the simplex space, the coordinates of a point restrict the allowed values of the other coordinates; in a 
sense, the dimensions fail to be independent by virtue of the shape of the space.  For example, if one 
coordinate of a point has the value 0.4, then no other coordinate can have a value higher than 0.6. 
 
Still, as before, we can characterize optimally strategic “voting” for Average aggregation within a 
simplex.  As in the one-dimensional space, a rational player would express ∑

≠

−=
ij

jii vnrv  if it were 

inside the allowed simplex space.  Otherwise, it must be projected to the (always uniquely) nearest point 
in the simplex, which may be on a vertex, an edge, a face, etc.  For example, if 3=d , then the simplex is 
an equilateral triangle with vertices ( )0,0,1 , ( )0,1,0  and ( )1,0,0 , and rational strategy can be 
characterized as follows:  If we calculate ∑

≠

−
ij

ji vnr  and call its three coordinates x, y and z, then player i 

should express 
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The rational strategy functions for higher-dimensional simplex spaces will have more cases but follow a 
similar pattern. 
 
As an example of rationally strategic players finding consensus in a simplex, consider 2=n  players 
trying to decide on the best way to allocate an amount of magic points among 3=d  uses, such as to 
attack the current enemy, to heal the players and to save for future situations.  The two players have 
sincere preferences ( ) ( )[ ]5.0,25.0,25.0,0,5.0,5.0=r  and use Average aggregation.  After repeatedly 
applying the rational strategy detailed above, they would soon reach the unique equilibrium 

( ) ( )[ ]1,0,0,0,5.0,5.0=v , giving the outcome ( )5.0,25.0,25.0 , which is player 2’s ideal outcome.  From 
this equilibrium, neither player can move the Average outcome nearer to ideal by Euclidean distance. 
 
Using Average aggregation in the one-dimensional space, it was possible to prove the following 
properties (LeGrand 2008): 

• A strategic equilibrium always exists. 
• The equilibrium outcome is unique. 
• The resulting DSV function is nonmanipulable by insincere agents. 

The equivalent properties may yet be proved in the simplex space; until then, it will be useful to look for 
counterexamples via Monte Carlo simulations. 
 
Experiments and results in a simplex 
We wrote software using the C programming language to simulate many random “elections”, checking 
each one to see whether the properties held.  The setup was as follows: 

• For each combination of d and n from { }6,5,4,3∈d  and { }13,8,5,3,2∈n , run one million 
simulated elections in d dimensions with n agents. 

• For each election, do the following: 
o Randomly generate a vector r  of n d-dimensional points, each coordinate of which has 

exactly gp  decimal places, from a uniform distribution in the simplex. 
o Taking the points in r  as the agents’ sincere preferences, iteratively vote strategically on 

behalf of each agent, using a randomized ordering of agents, until an equilibrium v  is 
reached.  Stop only when all coordinates of the points in v  are stable to ep  decimal 
places. 

o Repeat the iterative strategy from scratch, again using a randomized ordering of agents, 
until an equilibrium is reached.  Take note of an outcome-uniqueness violation if the 
Average outcomes at the two found equilibria differ to dp  decimal places in any 
coordinate. 

o Construct another vector r ′  of points such that 1r′  is regenerated randomly as before and 

ii rr =′  for all 1>i , representing an attempt on the part of agent 1 to deceive the DSV 
system with insincere strategy, and find an equilibrium with the new r ′ .  Take note of a 
successful Euclidean-distance manipulation if the equilibrium Average outcome using r ′  
is nearer, to dp  decimal places, in Euclidean distance to 1r  than is the equilibrium 
Average outcome using r .  Also take note of a successful dimension-domination 
manipulation if the equilibrium Average outcome using r ′  is nearer, to dp  decimal 
places, to 1r  than is the equilibrium Average outcome using r  in at least one of the d 
dimensions and farther, to dp  decimal places, in none of them. 
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We ran the above simulations with the values 4=gp , 13=ep  and 7=dp .  We chose dp  larger than 

gp  so as to detect much smaller differences among outcomes than the differences among input points, 

and we chose ep  larger than dp  so as to ensure that we did not detect a difference among outcomes that 
was due only to the inaccuracy of the DSV outcomes; the choice of 13=ep  was small enough for the 
DSV function to converge to an equilibrium quickly in practice.  None of the simulated elections failed to 
find an equilibrium, and none found two equilibria with different Average outcomes.  While by no means 
a proof, this result leads us to suspect simplex AAR DSV to be a mathematical function of its inputs, 
meaning that, given the same inputs, it will always give the same outcome. 
 
On the other hand, we found very quickly that simplex AAR DSV is Euclidean-distance-manipulable by 
insincere agents; Table 1 shows how often the attempted manipulations were successful in our 
simulations.  In fact, a manipulation opportunity exists for the simplex example given above.  If both 
players submit sincere preferences, the DSV system will apply rational strategy on the part of both 
players, find the unique equilibrium ( ) ( )[ ]1,0,0,0,5.0,5.0  and give the outcome ( )5.0,25.0,25.0 , player 
2’s ideal outcome.  But if player 1, instead of the sincere ( )0,5.0,5.0 , insincerely expresses the preference 
( )2.0,6.0,2.0 , the DSV system would instead find the unique equilibrium ( ) ( )[ ]75.0,0,25.0,0,1,0 .  The 
resulting outcome, ( )375.0,5.0,125.0 , is only 0.28125 away from player 1’s ideal in Euclidean distance, 
an improvement from the sincere outcome, which was 0.375 away.  Player 1 has thus successfully 
manipulated simplex AAR DSV, at least by Euclidean distance. 
 
However, while this manipulated outcome is closer to player 1’s ideal outcome in the second and third 
dimensions (0 vs. 0.25 and 0.375 vs. 0.5, respectively), it is farther from ideal in the first dimension 
(0.375 vs. 0.25).  In fact, our simulated elections found no example of a successful dimension-domination 
manipulation (Table 2).  This result, while again no proof, suggests that the simplex AAR DSV system 
may be immune to strategic manipulation at least in a weak sense:  It may be impossible for an agent to 
use insincerity to move a simplex AAR DSV outcome to one which is strictly better, i.e., closer to ideal 
on at least one dimension and farther on no dimension.  In other words, from any one agent’s point of 
view, insincerity that improves the outcome in one dimension must make it worse in another dimension. 
 
This narrower notion of immunity to strategic manipulation, which essentially makes strong assumptions 
about preferences voters may have, avoids previous impossibility results (Moulin 1980, Zhou 1991).  
Even if this assumption about players’ preferences would not always hold in real game situations, this 
simplex AAR DSV method does seem to be at least quite resistant to strategic manipulation. 
 
Table 1.  Incidence of successful Euclidean-distance manipulation in simplex simulation 
d         \         n 2 3 5 8 13 
3 6.4109% 4.2370% 4.0829% 3.6739% 3.4174% 
4 4.7949% 7.0336% 5.7254% 5.3783% 5.0183% 
5 3.1722% 6.3082% 6.6661% 6.1147% 5.7822% 
6 2.0793% 4.9974% 7.0774% 6.5012% 6.2127% 
 
Table 2.  Incidence of successful dimension-domination manipulation in simplex simulation 
d         \         n 2 3 5 8 13 
3 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 
4 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 
5 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 
6 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 
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MAKING ASYNCHRONOUS DECISIONS 
In many real games, collective decisions must be made quickly and players may need to express their 
preferences simultaneously.  In such situations, while a nonmanipulable method of aggregating 
preferences removes any chance of successful manipulation, a manipulable method like Average 
aggregation may work well enough in practice if the players have too little insight into the others’ 
preferences to take advantage of them.  A player may not know enough to inform a strategically insincere 
“vote”. 
 
On the other hand, in many social games, players are often playing at different times and on different 
schedules; Sid Meier’s Civilization World (under development; originally titled Civilization Network) 
may prove to be an excellent example.  If a cooperating group of players needs to make a collective 
decision, the players may often need to register their preferences asynchronously.  Our AAR-DSV-based 
methods adapt to this environment gracefully.  In fact, even if expressed preferences are made public 
before all of them have been expressed, players cannot take advantage of them.  Players can never do 
better (in the senses discussed above) than to express sincere preferences, and so no unfair advantage is 
generally gained by expressing preferences sooner or later than other players. 
 
Besides Civilization World, there are many other games currently being developed for Facebook and 
other social networking websites.  Our approach could potentially find a use in many games in which 
players cooperate by casting “votes” for collective actions or other kinds of outcomes. 
 
 
FUTURE RESEARCH DIRECTIONS 
There are several potentially interesting and useful directions for future research.  First, in light of the 
results of our simulations, it may be possible to prove for the simplex outcome space the equivalent 
results already proved for the line-segment and hypercube spaces.  Also worth consideration may be 
collective-decision-making methods with other outcome spaces, whether continuous spaces of different 
shapes or discrete spaces. 
 
Discrete outcome spaces certainly occur in real games.  They occur whenever players are faced with a 
collective decision among finitely many mutually exclusive choices, such as whether to deploy phasers or 
photon torpedoes against an enemy, or which of several computed paths to follow.  A continuous 
outcome space may even be effectively discretized when players’ preferences are multiple-peaked, such 
as when all players would prefer to attack either of the two flanks of an opposing army than to attack the 
center.  Previous impossibility results (Arrow 1951, Gibbard 1973, Satterthwaite 1975) may preclude the 
possibility of finding perfectly nonmanipulable decision-making protocols with (effectively) discrete 
outcome spaces, depending on assumptions made about players’ preferences, but the DSV framework 
may prove successful in minimizing opportunities for insincere strategy. 
 
Perhaps more immediately important than future theoretical directions, however, is deployment of these 
techniques in real games.  It will be instructive to note how useful and intuitive human players find them 
when cooperating with other human players and NPCs.  These techniques could also be used when groups 
of NPCs make collective decisions, and such use may make a game’s AI become more effective and/or 
seem more realistic—they may prove to increase the apparent independence of NPC agents.  Whether 
used with human players or NPCs, these techniques offer a flexible alternative to hierarchical group 
organization.  Eventually, they may inform future designs for multiagent AI frameworks in real games. 
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CONCLUSION 
In this chapter we have presented new methods for collective decision-making in games and explored 
their immunity and/or resistance to manipulation by insincere players.  We specifically applied our 
approach to the line-segment, hypercube and simplex outcome spaces, giving examples of each. 
 
We believe that our AAR DSV approach has many advantages: 

• It can contribute to both the AI and the player-to-player frameworks. 
• It allows agents to concentrate on determining optimal policies instead of on deceiving other 

agents with whom they are ostensibly cooperating. 
• It places a relatively small burden on players:  They need only indicate their ideal outcome; no 

complex ranking or rating of outcomes is needed. 
• It allows cooperating agents to find a compromise immediately, which is painless, rather than by 

fighting it out through the game, which may be costly to all. 
• It allows important decisions to be made whether players indicate their preferences 

simultaneously in real time or at different times. 
• Its outcome functions are decisive, efficient and easily implemented. 
• It is sufficiently general to be applied to decision situations in almost any kind of game. 

 
Certain assumptions, concerning the players’ preferences and continuity of the outcome space, are 
required for AAR DSV to work perfectly, but these assumptions are at least approximately true in many 
game situations.  We conclude that our approach is likely to be useful when designing real games. 
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KEY TERMS & DEFINITIONS 
 
Average-Approval-Rating (AAR) DSV:  A specific application of the DSV framework to a continuous 
outcome space that uses the Average aggregation procedure (simply averaging the inputs) as the internal 
voting method for the simulated election. 
 
Declared-Strategy Voting (DSV):  A framework for collective decision-making that uses agents’ 
preferences to vote on their behalf in a simulated election, the result of which becomes the DSV outcome. 
 
Hypercube:  A generalization of a cube into any dimension.  For example, 
( ){ }101010:,, ≤≤≤≤≤≤ zandyandxzyx  is a 3-hypercube (cube). 

 
Mechanism design:  A subfield of game theory that aims to design mechanisms that output a decisive 
outcome given agents’ input and are relatively robust to rationally strategic agents. 
 
Outcome:  The output of a collective-decision-making mechanism. 
 
Outcome space:  The set of allowed outcomes over which agents have preferences. 
 
Simplex:  A generalization of a triangle into any dimension.  For example, 
( ){ }1101010:,, =++≤≤≤≤≤≤ zyxandzandyandxzyx  is a 2-simplex (triangle). 

 
Single-peaked preferences:  Preferences for which it is never true that a and c are each preferred to b 
when cba ≤≤ . 


