
Approval Voting: Local Search
Heuristics and Approximation

Algorithms for the Minimax Solution

Rob LeGrand Evangelos Markakis Aranyak Mehta

Abstract

Voting has been the most general scheme for preference aggregation
in multi-agent settings involving agents of diverse preferences. Here,
we study a specific type of voting protocols for multi-winner elections,
namely approval voting, and we investigate the complexity of computing
or approximating the minimax solution in approval voting, concentrat-
ing on elections for committees of fixed size. Given an approval voting
election, where voters can vote for as many candidates as they like, a
minimax outcome is a committee that minimizes the maximum Ham-
ming distance to the voters’ ballots. We first show that the problem is
NP-hard and give a simple 3-approximation algorithm. We then intro-
duce and evaluate various heuristics based on local search. Our heuristics
have low running times (and provably polynomial) and our experimental
results show that they perform very well on average, computing solutions
that are very close to the optimal minimax solutions. Finally, we address
the issue of manipulating minimax outcomes. We show that even though
exact algorithms for the minimax solution are manipulable, we can have
approximation algorithms that are non-manipulable.

1 Introduction

Voting has been a very popular method for preference aggregation in multi-
agent environments. It is often the case that a set of agents with different
preferences need to make a choice among a set of alternatives, where the al-
ternatives could be various entities such as potential committee members, or
joint plans of action. A standard methodology for this scenario is to have each
agent express his preferences and then select an alternative (or more than one
alternative in multi-winner elections) according to some voting protocol. Sev-
eral decision making applications in AI have followed this approach including
problems in collaborative filtering [19] and planning [9, 10].

In this work we focus on solution concepts for approval voting, which is
a voting scheme for committee elections (multi-winner elections). In such a
protocol, the voters are allowed to vote for, or approve of, as many candidates as
they like. In the last three decades, many scientific societies and organizations
have adopted approval voting, including the American Mathematical Society
(AMS), the Institute of Electrical and Electronics Engineers (IEEE), the Game
Theory Society (GTS) and the European Association for Logic, Language and
Information.



A ballot in an approval voting protocol can be seen as a binary vector that
indicates the candidates approved of by the voter. Given the ballots, the obvious
question is: what should the outcome of the election be? The solution concept
that has been used in almost all such elections is the minisum solution, i.e.,
output the committee which, when seen as a 0/1-vector, minimizes the sum of
the Hamming distances to the ballots. If there is no restriction on the size of
the elected committee this is equivalent to a majority vote on each candidate.
If there is a restriction, e.g., if the elected committee should be of size exactly k,
then the minisum solution consists of the k candidates with the highest number
of approvals [4].

Recently, a new solution concept, the minimax solution, was proposed by
Brams, Kilgour and Sanver [3]. The minimax solution chooses a committee
which, when seen as a 0/1-vector, minimizes the maximum Hamming distance
to all ballots. When there is a restriction that the size of the committee should
be exactly k, then the minimax solution picks, among all committees of size k,
the one that minimizes the maximum Hamming distance to the ballots.

The main motivation behind the minimax solution is to address the issues
of fairness and compromise. Since minimax minimizes the disagreement with
the least satisfied voter, it tends to result in outcomes that are more widely
acceptable than the minisum solution. Also, majority tyranny is avoided: a
majority of voters cannot guarantee a specific outcome, unlike under minisum.
On the other hand, advantages of the minisum approach include simplicity, ease
of computation and nonmanipulability. A further discussion on the properties
and the pros and cons of the minisum and the minimax solutions can be found
in [3, 4].

In this work we address computational aspects of the minimax solution, with
a focus on elections for committees of fixed size. In contrast to the minisum
solution, which is easy to compute in polynomial time, we show that finding a
minimax solution is NP-hard. We therefore resort to polynomial-time heuristics
and approximation algorithms.

We first exhibit a simple algorithm that achieves an approximation factor
of 3. We then propose a variety of local search heuristics, some of which use
the solution of our approximation algorithm as an initial point. All our heuris-
tics run relatively fast and we evaluated the quality of their output both on
randomly generated data as well as on the 2003 Game Theory Society election.
Our simulations show that the heuristics perform very well, finding a solution
very close to optimal on average. In fact for some heuristics the average error
in the approximation can be as low as 0.05%.

Finally, in Section 5, we focus on the question of manipulating the minimax
solution. We show that any algorithm that computes an optimal minimax
solution is manipulable. However, the same may not be true for approximation
algorithms. As an example, we show that our 3-approximation algorithm is
nonmanipulable.



1.1 Related Work

The minimax solution concept that we study here was introduced by Brams,
Kilgour and Sanver [3]. In subsequent work by the same authors [4, 14], a
weighted version of the minimax solution is studied, which takes into account
the number of voters who voted for each distinct ballot and the proximity of each
ballot to the other voters’ ballots. The algorithms that are proposed in [3, 4, 14]
are all exponential, and this is not surprising since the problem is NP-hard,
as we exhibit in Section 3. Approximation algorithms have previously been
established only for the version in which there is no restriction on the size of the
committee (which includes as a possibility that no candidate is elected). This
variant is referred to as the endogenous minimax solution and it also arises in
coding theory under the name of the Minimum Radius Problem or the Hamming
Center Problem and in computational biology, where it is known as the Closest
String Problem. In the context of computational biology, it was shown by
Li, Ma and Wang [17] that the endogenous version admits a Polynomial Time
Approximation Scheme (PTAS), i.e., a (1+ε)-approximation for any constant ε
(with the running time depending exponentially in 1/ε). Other constant-factor
approximations for the endogenous version had been obtained before [12, 15].
We are not aware of any polynomial-time approximation algorithms or any
heuristic approaches for the non-endogenous versions, i.e., in the presence of any
upper or lower bounds on the size of the committee. Complexity considerations
for winner determination in multi-winner elections have also been addressed
recently [21] but not for the minimax solution.

2 Definitions and Notation

We now formally define our problem. We have an election with m ballots and
n candidates. Each ballot is a binary vector v ∈ {0, 1}n, with the meaning
that the ith coordinate of v is 1 if the voter approves of candidate i. For two
binary vectors vi, vj of the same length, let H(vi, vj) denote their Hamming
distance, which is the number of coordinates in which they differ. For a vector
v ∈ {0, 1}n, we will denote by wt(v) the number of coordinates that are set to
1 in v. The maxscore of a binary vector is defined as the Hamming distance
between it and the ballot farthest from it: maxscore(v) ≡ maxi H(v, vi) where
vi is the ith ballot. We first define the problem in its generality.

Problem [Bounded-size Minimax (BSM(k1, k2))] Given m
ballots, v1, . . . , vm ∈ {0, 1}n, and 2 integers k1, k2, with 0 ≤ k1, k2 ≤
n, find a vector v∗ such that k1 ≤ wt(v∗) ≤ k2 so as to minimize
maxscore(v∗).

Clearly BSM includes as a special case the endogenous version, which is
BSM(0, n), i.e., no restrictions on the size of the committee. Also, since in
some committee elections, the size of the committee to be elected is fixed (e.g.,



the Game Theory Society elections), we are interested in the following variant
of BSM with k1 = k2 = k:

Problem [Fixed-size Minimax (FSM(k))] Given m ballots,
v1, . . . , vm ∈ {0, 1}n, and an integer k with 1 ≤ k ≤ n, find a vector
v∗ of weight k so as to minimize maxscore(v∗).

In this preliminary version, we focus on elections with committees of fixed
size and report our findings for FSM. We briefly mention in the relevant sections
throughout the paper as well as in Section 6 which of our results extend to the
general BSM problem.

As we show in the next section, BSM and FSM are NP-hard. Therefore,
a natural approach is to focus on polynomial-time approximation algorithms.
We use the standard notion of approximation algorithms, defined below:

Definition 1. An algorithm for a minimization problem achieves an approxi-
mation ratio (or factor) of α (α ≥ 1), if for every instance of the problem the
algorithm outputs a solution with cost at most α times the cost of an optimal
solution.

3 NP-hardness and Approximation Algorithms

We first show that it is unlikely to have a polynomial-time algorithm for the
minimax solution. In fact for the endogenous version of BSM, BSM(0, n), NP-
hardness has already been established by Frances and Litman in [11], where
the problem is stated in the context of coding theory. It follows that BSM in
general is NP-hard. We next show that FSM is also NP-hard.

Theorem 1. FSM is NP-hard.

Proof. Suppose we had a polynomial-time algorithm for FSM. Then we could
run such an algorithm first with k = 0, then with k = 1 and so on up to
k = n and output the best solution. That would give an optimal solution
for BSM(0, n). Hence FSM is also NP-hard. An alternative proof for the
NP-hardness of FSM (and consequently of BSM as well) via a reduction from
Vertex Cover was also obtained by LeGrand [16].

FSM(k) can be solved in polynomial time if k is an absolute constant, since
then we can just go through all the

(
n
k

)
different committees and output the

best one. Also, if m is an absolute constant then we can express the problem
as an integer program with a constant number of constraints, which by a result
of Papadimitriou [18] can be solved in polynomial time.

The standard approach in dealing with NP-hard problems is to search for
approximation algorithms. We will now show that a very simple and fast algo-
rithm achieves an approximation ratio of 3 for FSM(k), for every k. In fact, we
will see that the algorithm has a factor of 3 for approval voting problems with
much more general constraints.



Before stating the algorithm we need to introduce some more notation.
Given a vector v, we will say that u is a k-completion of v, if wt(u) = k,
and H(u, v) is the minimum possible Hamming distance between v and any
vector of weight k. It is very easy to obtain a k-completion for any vector v: if
wt(v) < k, then pick any k−wt(v) coordinates in v that are 0 and set them to
1; if wt(v) > k then pick any wt(v) − k coordinates that are set to 1 and set
them to 0.

The algorithm is now very simple to state: Pick arbitrarily one of the m
ballots, say vj . Output a k-completion of vj , say u.

Obviously the algorithm runs in time O(n), independent of the number of
voters.

Theorem 2. The above algorithm achieves an approximation ratio of 3.

Proof. Let v∗ be an optimal solution (wt(v∗) = k) and let OPT =
maxscore(v∗) = maxi H(v∗, vi) be the maximum distance of a ballot from the
optimal solution. Let vj be the ballot picked by the algorithm and let u be the
k-completion of vj that is output by the algorithm. We need to show that for
every i, H(u, vi) ≤ 3 OPT. By the triangle inequality, we know that for every
1 ≤ i ≤ m, H(u, vi) ≤ H(u, vj)+H(vj , vi). By applying the triangle inequality
again we have:

H(u, vi) ≤ H(u, vj) + H(vj , v
∗) + H(v∗, vi)

Since v∗ is an optimal solution, we have that H(v∗, vi) ≤ OPT and
H(v∗, vj) ≤ OPT. Also since u is a k-completion of vj , by definition H(u, vj) ≤
H(v∗, vj) ≤ OPT. Hence in total we obtain that H(u, vi) ≤ 3 OPT, as de-
sired.

Remark 1. Note that if we know that there is at least one voter of weight k,
say wt(vj) = k, then we can prove that the algorithm achieves a ratio of 2, since
then u = vj and we need to apply triangle inequality only once.

Remark 2. The algorithm can be easily adapted to give a ratio of 3 for the BSM
version too. We only need to modify the notion of a k-completion accordingly.
In fact, for BSM(0, n), we can show that the ratio will be 2.

Note also that the analysis shows that there can be many different solutions
that constitute a 3-approximation, since every ballot can potentially have many
different k-completions.

Remark 3. Generalized Constraints: One may define an approval voting
problem with constraints that are more general than simply those on the size
of the committee (as in BSM). For example, one may have constraints on the
number of members elected from a particular subgroup of candidates (quotas),
or constraints which require exactly one out of two particular candidates to be
in the committee (XOR constraints). Suppose, for any vote vector v, we can
compute in polynomial time a feasible-completion of v, which is a committee



that satisfies the constraints, and is closest to v in Hamming distance. Then,
we can extend our algorithm to this setting in a natural manner, and prove that
it provides a factor 3 approximation.

We are not aware of any better approximation algorithm for FSM. The en-
dogenous version BSM(0, n), admits a Polynomial Time Approximation Scheme
(PTAS), i.e., for every constant ε, there exists a (1 + ε)-approximation, which
is polynomial in n and m and exponential in 1/ε. The PTAS was obtained
in [17], in the context of computational biology. Before that, constant-factor
approximations for BSM(0, n) had been obtained in [12] and [15]. We believe
that algorithms with such better factors may also be obtainable for FSM(k).

4 Local Search Heuristics for Fixed-size Mini-
max

Even though the algorithm of Section 3 gives us a theoretical worst-case guar-
antee (in fact, we may even have a better performance in practice for some in-
stances), a factor 3-approximation may still be far away from acceptably good
outcomes. In this section we focus on polynomial-time heuristics, which turn
out to perform very well in practice, if not optimally, even though we cannot
obtain an improved theoretical worst-case guarantee. The heuristics that we
will investigate are based on local search; some of them use the 3-approximation
as a starting point and retain its ratio guarantee.

4.1 A Framework for FSM Heuristics

Our overall heuristic approach is as follows. We start from a binary vector
(picked according to some rule) and then we investigate if neighboring solutions
to the current one improve the current maxscore. The local moves that we allow
are removing some candidates from the current committee and adding the same
number of candidates in, from the set of candidates who do not belong to the
current committee:

1. Start with some c ∈ {0, 1}n.

2. Repeat until maxscore(c) does not change for n loop iterations:

(a) Let A be the set of all binary vectors reachable from c by flipping
up to p number of 0-bits of c to 1 and p 1-bits to 0, where p is an
integer constant. (Note that c will necessarily be a member of A.)

(b) Let A? be the set that includes all members of A with smallest maxs-
core.

(c) Choose at random one member of A? and make it the new c.

3. Take c as the solution.



It is obviously important that the heuristic find a solution in time polynomial
in the size of the input. In the worst case, the loop in the heuristic could run
for n iterations for each step down in maxscore, so even if the maxscore of the
initial c is the largest possible, n, no more than O(n2) iterations of the loop
will be made. Each loop iteration runs in O(mn2p+1) time, since the number
of swaps to be considered is O(n2p) and calculating the maxscore of each takes
O(mn) time, so the worst-case running time for the heuristic is O(mn2p+3),
which is of course polynomial in m and n as long as p is constant.

This heuristic framework has two parameters: the starting point for the
binary vector c and the constant p. While many combinations are possible, we
will investigate using four different approaches to determining the c starting
point and two values of p—1 and 2—resulting in eight specific heuristics. The
c starting points are

1. A fixed-size-minisum solution: the set of the k candidates most approved
on the ballots.

2. The FSM 3-approximation presented above: a k-completion of a ballot.

3. A random set of k candidates.

4. A k-completion of a ballot with highest maxscore.

For approach 2, the ballot and k-completion are not chosen randomly: Of
the ballots with Hamming weight nearest to k, the v∗ minimizing sumscore(v) ≡∑

i H(v∗, vi) is chosen, and bits flipped are chosen to minimize resulting sum-
score. The endogenous minimax equivalent of each of these approaches was
investigated by LeGrand [16].

We will use the notation hi,j to refer to the heuristic with starting point i
and p = j. For example, h3,1 is the heuristic that starts with a random set of
k candidates and swaps at most one 0-bit with one 1-bit at a time.

4.2 Evaluating the Heuristics

We show that the heuristics find good, if not optimal, winner sets on average.
The approach is as follows. Given n, m and k, some large number of simulated
elections are run. For each election, m ballots of n candidates are generated
according to some distribution. The maxscores of the optimal minimax set and
the winner sets found using each of the heuristics are then calculated.

We used two ballot-generating distributions: “unbiased” and “biased”. The
unbiased distribution simply sets each bit on each ballot to 0 or 1 with equal
probability, like flipping an unbiased coin. The biased distribution generates
for each candidate two approval probabilities, π1 and π2, between 0 and 1 with
uniform randomness. The ballots are then divided into three groups. 40%
of the ballots are generated according to the π1 values; that is, each ballot
approves each candidate with probability equal to its π1 value. Another 40%



of the ballots are generated according to the π2 values, and the remaining 20%
are generated as in the unbiased distribution.

We ran 5000 simulated elections in each of seven different configurations,
varying n, m, k and the ballot-generating distribution. In the tables of results
below, the last column gives the results of running the heuristics 5000 times
each on the ballots from the 2003 Game Theory Society council election.

Table 1 gives the highest realized approximation ratio (maxscore found di-
vided by optimal maxscore) found over all 5000 elections for each heuristic, our
3-approximation (with ballot and flipped bits chosen at random), the minisum
set (for comparison), and a maximax set. A maximax set is a set of size k that
has the highest possible maxscore; it can be found by choosing a ballot with
Hamming weight nearest to n− k and performing a (n− k)-completion on it.

It can be seen that our 3-approximation in practice performs appreciably
better than its guarantee—its ratio was less than 2 for every simulated election.
(We were able to find instances of ratio-3 performance for smaller values of n,
e.g., 6.) As Table 1 shows, the heuristics reliably find solutions with ratios well
below 2, but the average ratios found, given in Table 2, show that the average
performance of the heuristics is more impressive still.

Finally, we compared the maxscores found by the heuristics with the worst
possible maxscore of a winner set, and scaled them so that the maxscore of
the exact minimax set becomes 100% and that of a maximax set becomes 0%,
giving a more intuitive performance metric for heuristics. For example, if the
minimax set has a maxscore of 12, a maximax set has a maxscore of 20 and a
heuristic finds a solution with maxscore 13, the heuristic’s scaled performance
for that election will be (20 − 13)/(20 − 12) = 87.5%. The averages of these
scaled performances can be found in Table 3.

We draw the following conclusions from our experiments.

• The heuristics perform well. Given the ballot distributions we used, very
rarely would a heuristic find a solution that is unacceptably poorer than
the optimal minimax solution. In particular, h2,1 and h2,2 vastly out-
perform the plain 3-approximation (while retaining its ratio-3 guarantee)
with only a modest increase in running time.

• The heuristics perform significantly better on average when p = 2 than
when p = 1. Increasing p further can be expected to improve performance
further, at the expense of increased running time.

• Comparing the performance of the heuristics with equal p, all four perform
similarly overall, but the best c-starting-point approach on average seems
to be the first (a fixed-size-minisum solution); it significantly outperforms
the other three sometimes (e.g., when p = 1 in the unbiased-coin cases
with 50 ballots) and is never outperformed by them with any statistical
significance.



Table 1: Largest approximation ratios found for local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS 2003
minimax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

h1,1 1.1818 1.0769 1.1538 1.2000 1.0909 1.0714
h2,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h3,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h4,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h1,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h2,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h3,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h4,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000

3-approx. 1.6667 1.4615 1.6154 1.8182 1.5833 1.3571
minisum 1.5455 1.4615 1.6923 1.6364 1.5833 1.2143
maximax 1.8182 1.5385 1.8462 2.2222 1.8182 1.7143

Table 2: Average approximation ratios found for local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS 2003
minimax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

h1,1 1.0058 1.0320 1.0093 1.0083 1.0210 1.0012
h2,1 1.0118 1.0365 1.0147 1.0112 1.0251 1.0017
h3,1 1.0122 1.0370 1.0151 1.0122 1.0262 1.0057
h4,1 1.0117 1.0364 1.0149 1.0116 1.0262 1.0059
h1,2 1.0004 1.0129 1.0011 1.0004 1.0025 1.0000
h2,2 1.0004 1.0164 1.0014 1.0005 1.0029 1.0000
h3,2 1.0004 1.0164 1.0018 1.0005 1.0031 1.0000
h4,2 1.0003 1.0167 1.0014 1.0006 1.0029 1.0000

3-approx. 1.2477 1.1871 1.2567 1.3121 1.2424 1.3571
minisum 1.1650 1.1521 1.1665 1.2119 1.1932 1.2143
maximax 1.6746 1.4895 1.7320 1.8509 1.6302 1.7143



Table 3: Average scaled performance of local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS ’03
h1,1 99.18% 94.05% 98.83% 99.07% 96.86% 99.82%
h2,1 98.33% 93.23% 98.11% 98.74% 96.24% 99.77%
h3,1 98.27% 93.13% 98.06% 98.62% 96.06% 99.20%
h4,1 98.33% 93.24% 98.08% 98.68% 96.08% 99.18%
h1,2 99.95% 97.60% 99.87% 99.95% 99.63% 100.00%
h2,2 99.95% 96.96% 99.83% 99.94% 99.57% 100.00%
h3,2 99.95% 96.95% 99.79% 99.94% 99.54% 100.00%
h4,2 99.96% 96.89% 99.83% 99.94% 99.57% 100.00%

3-approx. 63.36% 62.31% 65.04% 63.36% 61.73% 50.00%
minisum 75.57% 69.40% 77.29% 75.04% 69.49% 70.00%

5 Manipulation

Gibbard [13] and Satterthwaite [22] proved independently that any election
system that chooses exactly one winner from a slate of more than two candidates
and satisfies a few obviously desirable assumptions (such as an absence of bias
for some candidates over others) is sometimes manipulable. In other words,
there exist situations under any reasonable single-winner system in which some
voters can gain better outcomes for themselves by voting insincerely.

Happily, the Gibbard–Satterthwaite theorem does not apply to the minimax
and minisum solutions since they are free to choose winner sets of any size. In
fact, the minisum procedure is completely nonmanipulable when any set of win-
ners is allowed, as shown by Brams et al. [4]. This is true because a minisum
election with n candidates is exactly equivalent to n elections of two “candi-
dates” each: approve or disapprove that candidate. Since a voter’s decision to
approve or disapprove one candidate has absolutely no effect on whether other
candidates are chosen as winners, there is no more effective strategy than voting
sincerely. Consequently, it is reasonable to expect a set of minisum ballots to
have been sincerely voted.

Unfortunately, in addition to being possibly hard to compute exactly, the
minimax solution is easily shown to be manipulable for the FSM version.

Definition 2. Fix an approval voting algorithm A and a set of ballots v =
(v1, v2, ..., vm). Fix a voter i, and let v−i denote the ballots of the rest of the
voters. The loss Li

A(v) of voter i is defined as H(vi, A(v)). Algorithm A is
said to be manipulable if there exist ballots v, a voter i, and a ballot v′ 6= vi,
s.t. Li

A(vi,v−i) > Li
A(v′,v−i).



Theorem 3. Any algorithm that computes an optimal solution for FSM is
manipulable.

Proof. Consider the following set of sincere ballots:

00110, 00011, 00111, 00001, 10111, 01111

The minimax winner sets of size 2 are 00011 and 00101 with a maxscore of
2. The first voter, however, could manipulate the result by voting the insincere
ballot 11110. In that case, it can be checked that the optimal solution of size
2 is 00110, which is exactly the most preferred outcome of the first voter.

An analogous example for the endogenous version was provided by
LeGrand [16]. These examples illustrate a general guideline to manipulating
a minimax election: If there are candidates of which the majority disapproves,
a voter may be able to vote safely in favor of those candidates to force more
agreement with his relatively controversial choices. Put another way, if the
minimax set can be seen as a kind of average of all ballots, a voter can move
his ballot farther away from the current consensus to drag it closer to his ideal
outcome. The minimax solution is extremely sensitive to “outliers” compared
to the minisum solution, in much the same way that the average of a sample of
data is more sensitive to outliers than the median.

Although algorithms that always compute an optimal minimax solution are
manipulable, the same may not be true if we allow approximation algorithms.
The following theorem shows that we can have nonmanipulable algorithms if
we are willing to settle for approximate solutions.

Theorem 4. The voting procedure that results from using the 3-approximation
algorithm described in Section 3 is nonmanipulable.

Proof. The algorithm picks a ballot vj at random and outputs a k-completion of
vj . For a voter i, if the algorithm did not pick vi, then the voter cannot change
the output of the algorithm by lying. Furthermore, if the algorithm did pick
vi, then the best outcomes of size k for vi are precisely all the k-completions
of vi. Therefore, by lying, the voter cannot possibly alter the outcome to his
benefit.

We conjecture that the heuristics of Section 4 are also hard to manipulate.
Although we do not have a proof for this, our intuition is the following. The
heuristics use a lot of randomization—in all of them, either the starting point
or the local move is based on a random choice. It therefore seems unlikely for
a voter to be able to change his vote in such a way that the random choices of
the algorithms will (even in expectation) work towards his benefit.

The above theorems give rise to the following question:

Question 1. What is the smallest value of α for which there exists a nonma-
nipulable polynomial-time approximation algorithm with ratio α?



Another interesting question is whether there exist algorithms (either exact
or approximate) which are NP-hard to manipulate (i.e., although they are
manipulable, the voter would have to solve an NP-hard problem in order to
cheat). See Bartholdi et al. [1, 2] as well as more recent work [5, 6, 7, 8]
along this line of research. In another recent work [20], average-case complexity
is introduced as a complexity measure for manipulation instead of worst-case
complexity (NP-hardness).

6 Discussion and Future Work

We have initiated a study of the computational issues involved in committee
elections. Our results, along with the analysis of the endogenous version by
LeGrand [16], show that local search heuristics perform very well in approxi-
mating the minimax solution in polynomial time.

There are still many interesting directions for future research. In terms of
heuristic approaches, we are planning to adjust our heuristics for the weighted
version of the minimax solution, as introduced by Brams et al. [4]. This version
takes into account both the number of voters that vote each distinct ballot and
the proximity of each ballot to the other voters’ ballots. We are also investi-
gating variations of local search that may improve even more the performance,
e.g., can there be a better starting point in our heuristics, or can we enrich
the set of local moves without increasing too much the running time? An-
other interesting topic would be to compare local search with other heuristic
approaches that could be adapted for our problem, like simulated annealing or
genetic algorithms.

In terms of theoretical results, the most compelling question is to determine
the best approximation ratio that can be achieved in polynomial time for the
minimax solution. The questions stated in Section 5 regarding manipulation
would also be interesting to pursue.

7 Acknowledgements

We would like to than Eric van Damme, secretary-treasurer of the Game Theory
Society, for letting us use the ballot data of the 2003 Game Theory Society
council election in our experiments. We would also like to thank Steven Brams
for introducing us to the problem and for his valuable comments and pointers
to the literature.

References

[1] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. The computational
difficulty of manipulating an election. Social Choice and Welfare, 6:227–
241, 1989.



[2] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is it to control
an election? Mathematical Computational Modeling, 16(8/9):27–40, 1992.

[3] S. J. Brams, D. M. Kilgour, and M. R. Sanver. A minimax procedure for
negotiating multilateral treaties. In M. Wiberg, editor, Reasoned Choices:
Essays in Honor of Hannu Nurmi. Finnish Political Science Association,
2004.

[4] S. J. Brams, D. M. Kilgour, and M. R. Sanver. A minimax procedure for
electing committees. manuscript, 2006.

[5] V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed
to make elections hard to manipulate? In Proceedings of the 9th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK-03), pages
201–214, Bloomington, Indiana, 2003.

[6] V. Conitzer and T. Sandholm. Complexity of manipulating elections with
few candidates. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 314–319, Edmonton, Canada, 2002.

[7] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make
manipulation hard. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 781–788, Acapulco, Mexico,
2003.

[8] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manip-
ulation. In The 16th Annual International Symposium on Algorithms and
Computation (ISAAC 2005), pages 206–215, Sanya, Hainan, China, Dec.
2005.

[9] E. Ephrati and J. Rosenschein. The clarke tax as a consensus mechanism
among automated agents. In AAAI, pages 173–178, 1991.

[10] E. Ephrati and J. Rosenschein. Multi-agent planning as a dynamic search
for social consensus. In IJCAI, pages 423–429, 1993.

[11] M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30:113–119, Mar. 1997.

[12] L. Gasieniec, J. Jansson, and A. Lingas. Efficient approximation algorithms
for the Hamming center problem. In SODA, 1999.

[13] A. Gibbard. Manipulation of voting schemes: A general result. Economet-
rica, 41(3):587–601, May 1973.

[14] D. M. Kilgour, S. J. Brams, and M. R. Sanver. How to elect a representative
committee using approval balloting. In B. Simeone and F. Pukelsheim,
editors, Mathematics and Democracy: Recent Advances in Voting Systems
and Collective Choice. Springer, forthcoming, 2007.



[15] J. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string
selection problems. Information and Computation, 185:41–55, 2003.

[16] R. LeGrand. Analysis of the minimax procedure. Technical Report
WUCSE-2004-67, Department of Computer Science and Engineering,
Washington University, St. Louis, Missouri, Nov. 2004.

[17] M. Li, B. Ma, and S. Wang. Finding similar regions in many strings. In
STOC, pages 473–482, 1999.

[18] C. H. Papadimitriou. On the complexity of integer programming. Journal
of the ACM, 28(4):765–768, 1981.

[19] D. Pennock, E. Horvitz, and C. L. Giles. Social choice theory and rec-
ommender systems: Analysis of the axiomatic foundations of collaborative
filtering. In AAAI, pages 729–734, 2000.

[20] A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-
case complexity of manipulating elections. In AAMAS, pages 497–504,
Hakodate, Japan, 2006.

[21] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multi-winner elections:
Complexity of manipulation, control and winner-determination. In IJCAI,
Hyderabad, India, 2007.

[22] M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence
and correspondence theorems for voting procedures and social welfare func-
tions. Journal of Economic Theory, 10(2):187–217, Apr. 1975.

Rob LeGrand
Washington University in St. Louis
St. Louis, Missouri, U.S.A.
Email: legrand@cse.wustl.edu

Evangelos Markakis
University of Toronto
Toronto ON M5S3G4, Canada
Email: vangelis@cs.toronto.edu

Aranyak Mehta
IBM Almaden Research Center
San Jose, CA 95120, USA
Email: mehtaa@us.ibm.com


