Name:		
Value:	2	

Find the 1's complement of each of the following binary numbers:

10112	#1	10102	#2
11002	#3	10002	#4
00002	#5	11112	#6

Find the 2's complement of each of the following binary numbers:

10112	#7	10102	#8
11002	#9	10002	#10
00002	#11	11112	#12

Find the 15's complement of each of the following hexadecimal numbers:

102A _x	#13	3C98 _x	#14
4B7F _x	#15	ED65 _x	#16
0000 _x	#17	FFFF _x	#18
8000 _x	#19	7FFF _x	#20

102A _x	#21	3C98 _x	#22
4B7F _x	#23	ED65 _x	#24
0000 _x	#25	FFFF _x	#26
8000 _x	#27	7FFF _x	#28

Find the 16's complement of each of the following hexadecimal numbers:

The 10's complement of 2305_{10} is	#29
The 2's complement of 10110 ₃ is	#30
The 5's complement of 23410 ₅ is	#31
The 4's complement of 2301 ₄ is	#32
The 7's complement of 6540007 is	#33