Name: \qquad
Value: 2

Find the 1 's complement of each of the following binary numbers:

1011_{2}	$\# 1$	1010_{2}	$\# 2$
1100_{2}	$\# 3$	1000_{2}	$\# 4$
0000_{2}	$\# 5$	1111_{2}	$\# 6$

Find the 2 's complement of each of the following binary numbers:

1011_{2}	$\# 7$	1010_{2}	$\# 8$
1100_{2}	$\# 9$	1000_{2}	$\# 10$
0000_{2}	$\# 11$	1111_{2}	$\# 12$

Find the 15 's complement of each of the following hexadecimal numbers:

$102 \mathrm{~A}_{\mathrm{x}}$	$\# 13$	$3 \mathrm{C} 98_{\mathrm{x}}$	$\# 14$
$4 \mathrm{~B} 7 \mathrm{~F}_{\mathrm{x}}$	$\# 15$	ED65 $_{\mathrm{x}}$	$\# 16$
0000_{x}	$\# 17$	FFFF $_{x}$	$\# 18$
8000_{x}	$\# 19$	$7 \mathrm{FFF}_{\mathrm{x}}$	$\# 20$

Find the 16's complement of each of the following hexadecimal numbers:

$102 \mathrm{~A}_{\mathrm{x}}$	$\# 21$	$3 \mathrm{C} 98_{\mathrm{x}}$	$\# 22$
$4 \mathrm{~B} 7 \mathrm{~F}_{\mathrm{x}}$	$\# 23$	ED65 $_{\mathrm{x}}$	$\# 24$
0000_{x}	$\# 25$	FFFF $_{x}$	$\# 26$
8000_{x}	$\# 27$	$7 \mathrm{FFF}_{\mathrm{x}}$	$\# 28$

The 10 's complement of 2305_{10} is	$\# 29$
The 2's complement of 10110_{3} is	$\# 30$
The 5's complement of 23410_{5} is	$\# 31$
The 4's complement of 2301_{4} is	$\# 32$
The 7's complement of 654000_{7} is	$\# 33$

