
Lab 35 Due Date: See Blackboard

Source File: lab35.asm

Input: Standard Input
Output: Standard Output
Value: 5

The Hamming Character Code is a code in which single-bit errors can be detected and corrected. Each
7-bit ASCII character is embedded in an 11-bit code word called a Hamming character. Bit positions of
the hamming character are numbered from most significant to least significant. The encoding is done as
follows:

bit positions: 1 2 3 4 5 6 7 8 9 10 11
bits: p p d p d d d p d d d

Bits 1, 2, 4, and 8, all having bit positions that are a power of two, are parity bits. Bits 3, 5, 6, 7, 9, 10,
and 11 are the data bits which represent the most to least significant bits of the embedded ASCII character.
The parity bits are computed so that

bit 1 = (bit 3 + bit 5 + bit 7 + bit 9 + bit 11) mod 2

bit 2 = (bit 3 + bit 6 + bit 7 + bit 10 + bit 11) mod 2

bit 4 = (bit 5 + bit 6 + bit 7) mod 2

bit 8 = (bit 9 + bit 10 + bit 11) mod 2

For example, the ASCII character ‘M’ having 7-bit code 1001101 will be represented by 01110010101.

Suppose the text encoded as a sequence of Hamming characters is transmitted through a channel that
can introduce at most one bit error per Hamming character. We may determine the location of the error
and correct it as follows. If the Hamming character 01110010101 representing ‘M’ were to be received as
01110010001, the location of the errant bit may be computed magically as the sum of the positions of the
parity bits that disagree with their recomputed values. The offending bit is then complemented to determine
the correct Hamming character. Thus the received word 01110010001

∗ bit 1 is 0 1 = (bit 3 + bit 5 + bit 7 + bit 9 + bit 11) mod 2

bit 2 is 1 1 = (bit 3 + bit 6 + bit 7 + bit 10 + bit 11) mod 2

bit 4 is 1 1 = (bit 5 + bit 6 + bit 7) mod 2

∗ bit 8 is 0 1 = (bit 9 + bit 10 + bit 11) mod 2

1 + 8 = 9, which indicates the location of the offending bit! If bit 9 in 01110010001 is changed, it yields the
corrected Hamming character for ‘M’, 01110010101. This decoding method works for all Hamming characters
with one bit error. Naturally, if there are no bit errors, there will be no discrepancies between parity bits
and their recomputed values.

Input

A message is recorded in the input text file as a sequence of signed 32-bit integers, one per line, each
representing a single Hamming character with at most one bit error. The input is preceded by an unsigned
32-bit integer H , a header that represents the number of characters contained in the message. For example
the Hamming character that corresponds to ASCII ‘M’ is represented by 917. Write a program that decodes
the message, correcting for single-bit errors. The input should be read from standard input (use redirection).

CS 3304 — Computer Organization and Programming Page 1



Lab 35 Due Date: See Blackboard

Output

The decoded message should be written to the standard output as characters, not integers.

A sample execution sequence is shown in Figure 1. To use the Makefile as distributed in class, add
a target of lab35 to targetsAsmLanguage. An explanation of the input for the first dataset of the lines
following the header is shown in Figure 2.

1 newuser@csunix ~/3304/35> cp /usr/local/3304/data/35/* .
2 newuser@csunix ~/3304/35> cp /usr/local/3304/src/Makefile .
3 newuser@csunix ~/3304/35> touch lab35.asm
4 newuser@csunix ~/3304/35> make lab35
5 nasm -f elf32 -l lab35.lst -o lab35.o lab35.asm -I/usr/local/3304/include/ -I.
6 ld -m elf_i386 --dynamic-linker /lib/ld-linux.so.2 -o lab35 lab35.o \
7 /usr/local/3304/src/Along32.o -lc
8 newuser@csunix ~/3304/35> ../irvine_test.sh lab35 01.dat
9 Your Name - CS 3304 - Lab 35

10

11 Hamming
12 newuser@csunix ~/3304/35> ../irvine_test.sh lab35 01.dat > my.out
13 newuser@csunix ~/3304/35> diff 01.out my.out
14 newuser@csunix ~/3304/35> ../irvine_test.sh lab35 02.dat
15 Your Name - CS 3304 - Lab 35
16

17 !"#$%&’
18 ()*+,-./
19 01234567
20 89:;<=>?
21 @ABCDEFG
22 HIJKLMNO
23 PQRSTUVW
24 XYZ[\]^_
25 ‘abcdefg
26 hijklmno
27 pqrstuvw
28 xyz{|}~
29 newuser@csunix ~/3304/35> ../irvine_test.sh lab35 02.dat > my.out
30 newuser@csunix ~/3304/35> diff 02.out my.out
31 newuser@csunix ~/3304/35>

Figure 1. Commands to Assemble, Link, & Run Lab 35

Page 2 CS 3304 — Computer Organization and Programming



Lab 35 Due Date: See Blackboard

Input Input Integer Low-Order Offending Resulting
Integer in Hexadecimal 11 Bits Bit Character

22992 59D0 00111010000 5 1001000 = H

3533 0DCD 10111001101 9 1100001 = a

-20667 AF45 11101000101 7 1101101 = m

24407 5F57 11101010111 10 1101101 = m

14937 3A59 01001011001 3 1101001 = i

-17578 BB56 01101010110 0 1101110 = n

23535 5BEF 01111101111 6 1100111 = g

9370 249A 10010011010 0 0001010 = \n

Figure 2. Explanation of Input

CS 3304 — Computer Organization and Programming Page 3


