Lab 29 Due Date: See Blackboard

Source File: 1ab29.asm

Input: Standard Input
Output: Standard Output
Value: 3

A prime number is an integer greater than 1 whose only positive divisors are 1 and the integer itself.
The Greek mathematician Eratosthenes developed an algorithm, known as the Sieve of Eratosthenes, for
finding all prime numbers less than or equal to a given number n—that is, all primes in the range 2 through
n. Consider the list of numbers from 2 through n. Two is the first prime number, but the multiples of 2
(4,6,8,...) are not, and so they are crossed out in the list. The first number after 2 that was not crossed
out is 3, the next prime. We then cross out all higher multiples of 3 (6,9,12,...) from the list. The next
number not crossed out is 5, the next prime, and so we cross out all higher multiples of 5 (10,15, 20,...).
We repeat this procedure until we reach the first number in the list that has not been crossed out and whose
square is greater than n. All the numbers that remain in the list are the primes from 2 through n.

Write a program that uses this sieve method to find all the prime numbers from 2 through n. You are to
construct three functions for this assignment. The first will fill an array of bytes, the second will be used for
crossing out multiples, and the third will display the primes that remain. A description of the functions as
well as client code for testing your implementation is shown in Figure 1, and a sample execution sequence is
shown in Figure 2. To use the Makefile as distributed in class, add a target of 1ab29 to targets2AsmFiles.

1 [1list -]

2 %INCLUDE "Along32.inc"

3 %INCLUDE "Macros_Along.inc"
4 [list +]

7 extern FillArray
s ; HLL prototype: void FillArray(byte *array, int n);
o ; Sets array[0] = array[1] = 0 and array[i] =1, i =2, 3, ..., (n-1)

10 ; Receives: ESI = starting offset of array
nog ECX = # of elements in array
12 ; Returns: nothing

18 e

14

16 extern EliminateMultiples
17 ; HLL prototype: void EliminateNultiples(byte *array, int n, int k);
18 ; Implements the following loop:

19 for (i =k +k; 1 <n; i+=k)

20 array[i] = 0

21 ; For example, if k = 2, sets arrayl[4], array[6], array[8], ... to O
22 ; Receives: ESI = starting offset of array

23 ECX = # of elements in array

24 EDX = value of k

25 ; Returns: mnothing

0B e e e e e e e e

27

Figure 1. /usr/local/3304/src/lab29main.asm (Part 1 of 3)

CS 3304 — Computer Organization and Programming Page 1



Lab 29

Due Date: See Blackboard

29

30

31

32

33

34

36

37

38

39

40

68

69

70

71

72

73

74

extern DisplayArray

>

’

Returns:

for (i =

; HLL prototype: void DisplayArray(byte *array, int n);
Implements the following loop:
2; 1 < n; ++1i)

if array[i] == 1 then print i
Receives: ESI

ECX

SECTION .data

array

k

times
dd

SECTION .bss

n

resd

SECTION .text

global

_start:

.LO:

.L1:

.L2:

call
mov
inc

mov
mov
call

mov
mul
cmp
ja

mov
add
cmp
je
mov
mov
mov
call

inc

jmp

= starting offset of array

= # of elements in array

nothing

1024 db ’#’°
2

_start

ReadDec
[n],eax
dword [n]

esi,array
ecx, [n]
FillArray

eax, [k]
dword [k]
eax, [n]
L2

esi,array
esi, [k]

byte [esi],O
L1
esi,array
ecx, [n]

edx, [k]

)

>

EliminateMultiples ;

dword [k]

.LO

>

>

; end while

read an unsigned integer
move the integer to n
increment n by 1

while (k * k <= n) do

if (arrayl[k] != 0) then

call EliminateMultiples

end if

increment k

Figure 1. /usr/local/3304/src/lab29main.asm (Part 2 of 3)

Page 2

CS 3304 — Computer Organization and Programming



Lab 29 Due Date: See Blackboard
75 mov esi,array
76 mov ecx, [n]
77 call DisplayArray
78
79 Exit {0}
Figure 1. /usr/local/3304/src/lab29main.asm (Part 3 of 3)
1 newuser@csunix ~/3304/29> cp /usr/local/3304/data/29/*
2 newuser@csunix ~/3304/29> cp /usr/local/3304/src/Makefile
3 newuser@csunix ~/3304/29> cp /usr/local/3304/src/lab29main.asm
4 newuser@csunix ~/3304/29> touch lab29.asm
5 newuser@csunix ~/3304/29> make lab29

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

nasm -f elf32
nasm -f elf32
1d -m elf_i386

-1 1lab29main.lst -o lab29main.o lab29main.asm -I/usr/local/3304/include/ -I.
-1 1ab29.1st -o lab29.0 lab29.asm -I/usr/local/3304/include/ -I.
--dynamic-linker /1ib/ld-linux.so.2 -o lab29 lab29main.o lab29.o \

/usr/local/3304/src/Along32.0 -lc

newuser@csunix
2

3

5

7

11

13

17

19

23

29

31
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix
newuser@csunix

~/3304/29> ../irvine_test.sh 1lab29 01.dat

~/3304/29> ../irvine_test.sh lab29 0l.dat > my.out
~/3304/29> diff 0l1.out my.out

~/3304/29> ../irvine_test.sh lab29 02.dat > my.out
~/3304/29> diff 02.out my.out

~/3304/29> ../irvine_test.sh lab29 03.dat > my.out
~/3304/29> diff 03.out my.out

~/3304/29> ../irvine_test.sh lab29 04.dat > my.out
~/3304/29> diff 04.out my.out

~/3304/29>

Figure 2. Commands to Assemble, Link, & Run Lab 29

CS 3304 — Computer Organization and Programming Page 3




